Stable Diffusion绘画 | 来训练属于自己的模型:秋叶训练器使用

前言:

在AI绘画的奇妙世界中,你是否渴望拥有独属于自己风格的画作?想让作品展现出与众不同的创意与灵魂?别再羡慕他人的惊艳之作,现在就开启你的创作进阶之路,一同探索如何用秋叶训练器在Stable Diffusion中训练专属模型。

下载安装

第1步:安装包下载解压后,先运行 A强制更新-国内加速.bat

它会自动安装一系列的必须部件。
这份完整版的SD整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述
第2步:安装完毕之后,点击运行 A启动脚本.bat ,打开 秋叶训练器:

如果在 第2步 中,后台出现 找不到指定的模块 "……\torch\lib\fbgemm.dll" or one of its dependencies 的报错信息,可参考以下链接进行解决:

https://www.bilibili.com/read/cv38460890/?from=search&spm_id_from=333.337.0.0&jump_opus=1

素材准备

由于 秋叶训练器 内没有 repeat值 的设置,需要通过文件夹命名的方式来设置 repeat值

……\lora-scripts-v1.9.0\train 文件夹中,新建一个该模型的主文件夹:

在 主文件夹 中,新建一个含有 repeat值 的文件夹:

再把裁剪好的图片、以及优化处理好的打标文件,一并放置进来:

LoRA 训练

选择「新手模式」:

模型训练的各个参数说明,整体与cybertronfurnace的设置相似,具体可参考文章:

Stable Diffusion绘画 | 来训练属于自己的模型:配置完成,炼丹启动

我的全部参数设置如下所示:

完成所有参数配置后,点击右下角「开始训练」:

模型训练过程中,可通过后台观察进度:

等待所有模型生成完毕后,将 ……\lora-scripts-v1.9.0\output 中模型文件,复制到 SD安装路径\models\Lora 中:

LoRA 模型测试

打开 SD,选择与训练一致的模型,输入提示词,修改宽高比,加载一个相对靠后的 LoRA 模型

生成图片如下所示:

今天先分享到这里~
这份完整版的SD整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 秋叶主题 Stable Diffusion LoRA 模型下载与教程 #### 背景概述 LoRA(Low-Rank Adaptation)是一种高效的微调方法,适用于大规模预训练模型Stable Diffusion。这种方法通过仅更新少量参数来实现快速适配特定任务或风格的需求[^2]。 #### 获取秋叶相关资源的方法 对于希望获取秋叶主题下的Stable Diffusion LoRA模型及其配套教程的用户来说,可以从以下几个方面入手: 1. **官方文档和社区分享** 鉴于提到的“秋叶启动器”,这是一个专注于简化Stable Diffusion模型训练流程的工具集合。它不仅提供了友好的图形化操作界面,还内置了许多常用的配置选项以及优化建议。如果需要了解具体如何设置环境变量或者运行脚本等内容,则可以直接访问其开发者维护的相关仓库地址[^3]。 2. **第三方平台推荐** 此外,在一些活跃的技术交流平台上也能找到由其他使用者整理上传的教学资料。例如CivitAI网站上就有不少关于不同艺术家风格转换案例的研究成果展示;而像Hugging Face这样的开源项目托管站点同样聚集了大量的高质量素材供免费取用。 3. **实际应用中的注意事项** - 训练过程中需注意合理选取样本规模并科学调节各类超参指标(比如learning rate),这样才能有效提升最终产出质量。 - 同时也要考虑到硬件条件限制因素可能带来的影响——GPU显存容量不足等情况可能会导致程序崩溃等问题发生。 ```python import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline model_id = "path/to/your/lora/model" pipe = StableDiffusionPipeline.from_pretrained(model_id).to("cuda") scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.scheduler = scheduler prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt=prompt).images[0] image.save("./astronaut_rides_horse.png") ``` 上述代码片段展示了加载自定义路径下LoRA权重文件并通过指定提示词生成对应视觉内容的基本逻辑框架结构[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值