YOLOv11 改进策略 | GhostNetV2:利用远距离注意力增强廉价操作
介绍
为满足移动设备和边缘计算平台对模型效率的需求,研究人员不断探索构建参数量和计算量极低的神经网络架构。GhostNet 是一个成功的轻量级网络系列,其核心思想是利用“廉价操作”(如线性变换或深度卷积)从少量基础特征生成大量“幽灵”特征,从而减少标准卷积带来的冗余计算。GhostNetV2 作为 GhostNet 的演进版本,在继承 GhostNet 高效率的同时,通过引入远距离注意力机制来增强这些“廉价操作”产生的特征,从而提升模型的特征表示能力,弥补 GhostNet 在捕获全局信息方面的不足。将 GhostNetV2 作为 YOLOv11(假设的未来版本)的骨干网络,可以在实现极致轻量化的同时,获得更好的性能。
引言
YOLO 系列算法致力于提供高效准确的目标检测方案。随着模型复杂度的增加,其在资源受限设备上的部署面临挑战。GhostNet 通过其独特的特征生成方式,在极低的计算成本下构建了有效的骨干网络。然而,纯粹依赖局部操作生成的特征可能缺乏足够的全局上下文信息,影响模型在复杂场景下的表现。GhostNetV2 认识到这一点,并在 GhostNet 的基础上进行了改进,通过设计一种能够与“廉价操作”协同工作的远距离注意力机制。这种注意力机制不像标准自注意力那样计算昂贵,而是以一种高效的方式捕获全局依赖,用这些全局信息“增强”或“调整”由廉价操作生成的特征。将 GhostNetV2 替换 YOLOv11 的骨干网络,意味着 YOLOv11 将获得一个极致高效且具备一定全局感知能力的特征提取器,使其在移动端、嵌入式设备上实现更快的推理速度和更优的性能。
技术背景
标准卷积与 Ghost Module (回顾)
- 标准卷积: 计算量大,存在冗余。
- Ghost Module: 将输入特征图通过一个标准卷积生成少量“基础特征”,然后对这些基础特征应用一系列“廉价操作”(例如 3x3 深度卷积、1x1 卷积等)生成大量“幽灵特征”,最后将基础特征和幽灵特征拼接。这种方式用廉价操作替代部分标准卷积,降低了计算成本。
GhostNet (回顾)
GhostNet 利用 Ghost Module 构建整个骨干网络,通过堆叠 Ghost Block(包含两个 Ghost Module 和一个 Shortcut)实现特征提取和下采样。GhostNet 在移动端任务上表现出优异的性能-效率权衡。
GhostNet 的局限性
GhostNet 主要依赖于局部操作(标准卷积和深度卷积)来生成特征,虽然效率高,但在捕获远距离依赖和全局上下文信息方面能力较弱。
GhostNetV2 的创新点 (基于描述)
GhostNetV2 在 GhostNet 的基础上进行了改进,核心创新在于:
- 远距离注意力机制 (Long-Range Attention): 设计了一种高效的远距离注意力模块,用于捕获特征图中的全局依赖关系。这种注意力机制不同于标准自注意力的高昂计算,而是以一种计算友好的方式实现。
- 增强廉价操作: 将这种远距离注意力机制与 Ghost Module 的“廉价操作”相结合。注意力机制产生的全局信息或权重用于“增强”或“调制”由廉价操作生成的“幽灵特征”,使得这些特征包含更丰富的全局语境信息。
GhostNetV2 架构哲学
GhostNetV2 的架构可能通过在 Ghost Block 内部或之间插入这种远距离注意力模块来实现。注意力模块与 Ghost Module 的廉价操作紧密结合,确保在引入全局感知能力的同时,不破坏整体架构的高效率。
应用使用场景
基于 GhostNetV2 骨干网络的 YOLOv11 模型特别适用于需要实现极致轻量化和在资源受限设备上部署的场景:
- 超低功耗设备: 在电量极度敏感的物联网终端、传感器节点上进行基础的物体检测。
- 存储空间极度有限的设备: 模型文件尺寸非常小,方便部署在存储容量小的设备上。
- 需要极高推理速度的应用: 在某些对延迟要求极高的场景下,GhostNetV2 的高效率能够满足需求。
- 在保持极致效率的同时,需要一定全局感知能力的场景: GhostNetV2 相比原始 GhostNet 在性能上有所提升。
不同场景下详细代码实现
由于 GhostNetV2 是 GhostNet 的演进版本,其具体实现细节,特别是远距离注意力机制和与廉价操作的结合方式,需要参考其论文原文。这里我们提供 Ghost Module 的实现,以及一种概念性的远距离注意力模块和 GhostNetV2 Block 的实现骨架。
1. Ghost Module 实现 (PyTorch)
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicConv(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
super().__init__()
if p is None:
p = k // 2 if k > 1 else 0
self.conv = nn.Conv2d(c1, c2, k, s, p, groups=g, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = nn.ReLU(inplace=True) if act else nn.Identity() # GhostNet V1/V2 often use ReLU
def forward(self, x):
return self.act(self.bn(self.conv(x)))
class GhostModule(nn.Module):
def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, act=True):
super().__init__()
self.oup = oup
# Primary convolution to generate intrinsic features
self.primary_conv = BasicConv(inp, oup // ratio, kernel_size=kernel_size, stride=stride, act=act)
# Cheap operations to generate ghost features
# This is a sequential DWConv and then a BasicConv (1x1) without activation for the last one
self.cheap_ops = nn.Sequential(
BasicConv(oup // ratio, oup // ratio, kernel_size=dw_size, stride=1, g=oup // ratio, act=act), # DWConv
# BasicConv(oup // ratio, oup // ratio, kernel_size=1, stride=1, act=False), # Maybe an optional 1x1 conv? GhostNet often uses just DWConv
)
# 1x1 convolution if input channels == output channels for residual connection
# self.shortcut = nn.Sequential() if stride == 1 and inp == oup else BasicConv(inp, oup, kernel_size=1, stride=stride, act=False)
def forward(self, x):
# Generate primary features
x_primary = self.primary_conv(x)
# Generate ghost features from primary features
x_ghost = self.cheap_ops(x_primary)
# Concatenate primary and ghost features
out = torch.cat([x_primary, x_ghost], dim=1) # Channels will be (oup // ratio) + (oup // ratio) = oup
return out
2. 假设的高效远距离注意力模块实现 (PyTorch - 概念性)
例如,一个简化的轴向注意力。
import torch
import torch.nn as nn
import torch.nn.functional as F
# Simplified Axial Attention (Concept) - Example of efficient long-range attention
class AxialAttention(nn.Module):
def __init__(self, dim, num_heads=8):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
assert self.head_dim * num_heads == dim, "dim must be divisible by num_heads"
# QKV projections (applied across spatial dimension)
self.qkv = nn.Conv2d(dim, dim * 3, 1) # Use Conv for efficiency/equivariance
self.proj = nn.Conv2d(dim, dim, 1)
# Positional Encoding (Simplified, e.g., learned embeddings)
# self.pos_embed_h = nn.Parameter(torch.randn(1, self.num_heads, 1, 1, self.head_dim))
# self.pos_embed_w = nn.Parameter(torch.randn(1, self.num_heads, 1, 1, self.head_dim))
def forward(self, x):
B, C, H, W = x.size()
# QKV from Conv
qkv = self.qkv(x).reshape(B, 3, self.num_heads, self.head_dim, H, W).permute(1, 0, 2, 4, 5, 3) # (3, B, heads, H, W, head_dim)
q, k, v = qkv[0], qkv[1], qkv[2