Matlab实现经典功率谱分析和估计

Matlab 实现经典功率谱分析和估计

功率谱

功率谱是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。功率谱表示了信号功率随着频率的变化关系 。
常用于功率信号(区别于能量信号)的表述与分析,其曲线(即功率谱曲线)一般横坐标为频率,纵坐标为功率。周期性连续信号x(t)的频谱可表示为离散的非周期序列XnXnXn,它的幅度频谱的平方│Xn│2│Xn│2│Xn│2所排成的序列,就被称之为该周期信号的“功率谱”。

Matlab使用

fft做出来是频谱,psd做出来是功率谱;功率谱丢失了频谱的相位信息;频谱不同的信号其功率谱是可能相同的;功率谱是幅度取模后平方,结果是个实数。matlab中自功率谱密度直接用psd函数就可以求,按照matlab的说法,psd能实现Welch法估计,即相当于用改进的平均周期图法来求取随机信号的功率谱密度估计。psd求出的结果应该更光滑吧。

1.直接法

直接法又称周期图法,它是把随机序列x(n)x(n)x(n)的NNN个观测数据视为一能量有限的序列,直接计算x(n)x(n)x(n)的离散傅立叶变换,得X(k)X(k)X(k),然后再取其幅值的平方,并除以NNN,作为序列x(n)x(n)x(n)真实功率谱的估计。

Matlab代码示例

clear;
Fs=1000; %采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
window=boxcar(length(xn)); %矩形窗
nfft=1024;
[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法

subplot(1,2,1);
plot(xn);title('原始信号');
subplot(1,2,2);
plot(f,10*log10(Pxx));title('周期图法信号');

结果,左图原始信号,右图为周期图法信号。
在这里插入图片描述

2.间接法

间接法先由序列x(n)x(n)x(n)估计出自相关函数R(n)R(n)R(n),然后对R(n)R(n)R(n)进行傅立叶变换,便得到x(n)x(n)x(n)的功率谱估计。
Matlab 代码示例:

clear;
Fs=1000; %采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数
CXk=fft(cxn,nfft);
Pxx=abs(CXk);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
subplot(1,2,1);
plot(xn);title('原始信号');
subplot(1,2,2);
plot(k,plot_Pxx);title('间接法信号');

结果,右图为间接法
在这里插入图片描述

3.改进直接法:Bartlett法

对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。

Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。
Matlab代码示例:

clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(length(n)); %矩形窗
noverlap=0; %数据无重叠
p=0.9; %置信概率
[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot_Pxxc=10*log10(Pxxc(index+1));
subplot(1,2,1);
plot(k,plot_Pxx);title('直接法信号');
subplot(1,2,2);
plot(k,[plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc]);title('Bartlett信号');

结果,左图为直接法,右图为Bartlett法
在这里插入图片描述

4.Welch法

Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n)w(n)w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。二是在分段时,可使各段之间有重叠,这样会使方差减小。
Matlab代码示例:

clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(100); %矩形窗
window1=hamming(100); %海明窗
window2=blackman(100); %blackman窗
noverlap=20; %数据无重叠
range='half'; %频率间隔为[0 Fs/2],只计算一半的频率
[Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range);
[Pxx1,f1]=pwelch(xn,window1,noverlap,nfft,Fs,range);
[Pxx2,f2]=pwelch(xn,window2,noverlap,nfft,Fs,range);
plot_Pxx=10*log10(Pxx);
plot_Pxx1=10*log10(Pxx1);
plot_Pxx2=10*log10(Pxx2);

subplot(1,3,1);
plot(f,plot_Pxx);title('矩形窗');

subplot(1,3,2);
plot(f1,plot_Pxx1);title('汉明窗');

subplot(1,3,3);
plot(f2,plot_Pxx2);title('blackman窗');

结果,从左至右分别为:矩形窗海明窗blackman窗
在这里插入图片描述

附上谋篇论文,分析EEG信号功率谱代码

Matlab 代码:

fs=200;
n=0:1/fs:1;
xn=cos(2*pi*40*n)+cos(2*pi*41*n)+3*cos(2*pi*90*n)+0.1*randn(size(n));
window=boxcar(length(xn));
nfft=512;
[pxx,f]=periodogram(xn,window,nfft,fs);
figure(12);
subplot(121);
plot(f,10*log10(pxx));
xlabel('frequency(hz)');
ylabel('power spectral density(db/hz)');
title('period psd estimate');
orderl=50;
range='half';
magunits='db';
subplot(122);
pburg(xn,orderl,nfft,fs,range);

在这里插入图片描述

经典功率谱分析是一种将信号分解成多个频率成分并计算每个频率成分功率的方法。其中,间接法是一种常用的功率谱估计方法,它基于自相关函数的估计结果来计算功率谱。 以下是使用MATLAB实现间接法的经典功率谱分析估计的步骤: 1.读取信号数据 使用MATLAB中的load函数或其他相关函数读取信号数据。假设信号数据为x,采样频率为Fs。 2.计算自相关函数 使用MATLAB中的xcorr函数计算信号x的自相关函数。自相关函数可以通过以下公式计算: $$R_x(k)=\frac{1}{N}\sum_{n=k}^{N-1}x(n)x(n-k)$$ 其中,k为自相关函数的延迟,N为信号长度。 3.计算功率谱 使用MATLAB中的fft函数对自相关函数进行傅里叶变换,得到信号功率谱密度估计。具体地,功率谱可以通过以下公式计算: $$P_x(f)=\frac{|X(f)|^2}{Fs}$$ 其中,X(f)为信号的傅里叶变换,Fs为采样频率。 4.绘制功率谱图 使用MATLAB中的plot函数或其他相关函数绘制功率谱图。根据需要,可以使用MATLAB中的xlim和ylim函数设置x轴和y轴的范围,使用xlabel和ylabel函数设置x轴和y轴的标签,以及使用title函数设置图表标题。 下面是一个MATLAB代码示例,实现了间接法的经典功率谱分析估计: ```matlab % 读取信号数据 load('signal.mat'); x = signal; Fs = 1000; % 计算自相关函数 R = xcorr(x); % 计算功率谱 P = abs(fft(R)).^2/Fs; % 绘制功率谱图 f = (0:length(P)-1)*Fs/length(P); plot(f, 10*log10(P)); xlim([0 Fs/2]); ylim([-60 60]); xlabel('Frequency (Hz)'); ylabel('Power (dB)'); title('Power Spectral Density Estimate - Indirect Method'); ``` 在这个示例中,我们假设信号数据存储在名为signal.mat的MAT文件中。代码加载信号数据并计算自相关函数和功率谱,最后绘制功率谱图。xlim和ylim函数设置x轴和y轴的范围,xlabel和ylabel函数设置x轴和y轴的标签,以及title函数设置图表标题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值