数学建模之优化问题

采用优化方法时,要明确4个要素,决策变量,目标函数,约束条件是什么。下面进行阐述3种类型的优化处理以及matlab代码。

线性规划问题

用matlab处理一般的线性规划问题的标准型为:
min z= ∑ j = 1 n c j x i \sum_{j=1}^nc_jx_i j=1ncjxi
s.t. ∑ j = 1 n a i j x i ≤ b j \sum_{j=1}^na_{ij}x_i\leq b^j j=1naijxibj
也就是说标准形式应该满足,目标函数必须是 ≤ \leq 的形式,约束条件也应该是 ≤ \leq 的形式。如果目标函数

max z= ∑ j = 1 n c j x i A x ≥ b \sum_{j=1}^nc_jx_i Ax\geq b j=1ncjxiAxb
可以转化为 m i n z = ∑ j = 1 n c j x i − A x ≤ − b min z=\sum_{j=1}^n c_jx_i -Ax \leq -b minz=j=1ncjxiAxb形式。

在MATLAB中基本的函数形式是
[c,favl]=linprog(c,A,b,Aeq,beq,LB,UB,X0,OPTIONS),返回值是最有解的一组向量x.解释如下:
A,b对应不等式的约束
Aeq,beq对应等式的约束
LB,UB分别是变量x的上界和下界
X0是变量的初始值,OPTIONS是控制参数(一般不用管)
例子:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值