[区间DP] 洛谷P1063 能量项链(环的处理)

题目

LP1063

思路

做这道题做了一早上。。只能说,做紫书例题做多了,都是LRJ已经想好了所有的细节给出了完美无缺的思路,只是让我去实现一下代码,甚至在代码实现的时候还回去看下std程序。这就养成了上来大大咧咧做,不考虑细节,不仔细演算的坏习惯。。同时还会给一种——这种板子题,瞎JB乱搞也能做出来,不停地改一个参数跑一次测评,就等AC那一下,为什么改都不知道。。看吧,区间DP入门题,顶死加个环算难度,耗了一上午。


首先本题与矩阵链乘的区别是,本题是个环。这里用一个简单的方法把环转换成链:把环再复制一次加到环尾,总数组长度变成2*n。计算时只要任意选取其中长度尾n的一条链,就已经枚举了所有可能性。


本题的思路是区间DP的模板,不说了,下面是本题具体情况的分析,我所欠缺的正是这方面
这里写图片描述

代码

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define _for(i,a,b) for(int i = (a); i<(b); i++)
#define _rep(i,a,b) for(int i = (a); i<=(b); i++)
using namespace std;

const int maxn = 100 + 10;
int n, A[2*maxn], d[2*maxn][2*maxn];

int main() {
    scanf("%d", &n);
    _for(i, 0, n) scanf("%d", &A[i]);
    _for(i, 0, n) A[i + n] = A[i];

    _for(l, 1, n)
        _rep(i, 1, 2 * n - 1) {
            int j = l + i;
            if (j > 2 * n - 1) continue;
            _rep(k, i, j - 1)
                d[i][j] = max(d[i][j], d[i][k] + d[k + 1][j] + A[i-1] * A[k] * A[j]);
        }

    int ans = 0;
    _rep(i, 1, n)
        ans = max(ans, d[i][i + n - 1]);

    printf("%d\n", ans);

    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值