《Mining the massive data》 第一章 笔记

《Mining the massive data》 第一章 笔记


  • 数据挖掘的基本概念
    数据挖掘是数据“模型”的发现过程,e.g.统计建模
  • 机器学习vs数据挖掘
    一些数据挖掘 方法中 使用了机器学习算法,如贝叶斯网络, SVM , 决策树,隐马尔科夫模型etc。
    机器学习擅长的典型场景是人民对数据中的寻找目标一无所知,如推荐算法。但如果我们队挖掘的目标能够直接描述,机器学习算法并不高效。
  • 数据建模的方法
    1) 数据汇总:对数据进行简洁的近似汇总描述。e.g. PageRank,聚类
    2)特征抽取:从数据中抽取特征,并忽略其他。e.g. 频繁项集,相似性
  • 数据挖掘的统计限制

邦弗朗尼原理 (Bonferroni correction)
假设数据随机,计算所寻找事件的期望,如果该期望值显著高于你所希望找到的真实事件的数目,那么寻找到的结果都是臆造的,是统计的假象。


习题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值