《Mining the massive data》 第一章 笔记
- 数据挖掘的基本概念
数据挖掘是数据“模型”的发现过程,e.g.统计建模 - 机器学习vs数据挖掘
一些数据挖掘 方法中 使用了机器学习算法,如贝叶斯网络, SVM , 决策树,隐马尔科夫模型etc。
机器学习擅长的典型场景是人民对数据中的寻找目标一无所知,如推荐算法。但如果我们队挖掘的目标能够直接描述,机器学习算法并不高效。 - 数据建模的方法
1) 数据汇总:对数据进行简洁的近似汇总描述。e.g. PageRank,聚类
2)特征抽取:从数据中抽取特征,并忽略其他。e.g. 频繁项集,相似性 - 数据挖掘的统计限制
邦弗朗尼原理 (Bonferroni correction)
假设数据随机,计算所寻找事件的期望,如果该期望值显著高于你所希望找到的真实事件的数目,那么寻找到的结果都是臆造的,是统计的假象。