《剑指offer》48、二分查找:排序数组中某数的出现次数

博客探讨了如何使用二分查找法解决《剑指offer》48题,即在有序整型数组中查找整数k的出现次数。二分查找涉及到诸多细节,包括算法流程、框架和边界处理。文中提供了百度百科的Python实现,并强调在处理重复元素时,二分查找可能效率较低。
摘要由CSDN通过智能技术生成

offer48提出的问题是:假设给定一个有序的整型数组arr,以及一个整数 k,问 k在数组中出现了几次?

二分查找法

由于暴力法过于无脑,这里代码都不给了……我想以本例为引子,简单介绍一下二分查找法。
设计出KMP算法的大佬说过:
Although the basic idea of binary search is comparatively straightforward, the details can be surprisingly tricky
whcih means二分查找涉及很多不明不白不清不楚的细节问题。

算法流程

1、二分查找法,其实就是通过三个数来查找:选一个开始值,选一个末尾值,在选数组中间值,
2、接着用想查找的值做比较,如果大于中间值那么把开始值放当刚求的中间值,也就是把中间值当成开始值,继续求平均值,继续跟提供的值做比较,反之如果是小于中间值那么旧把末尾值变成中间值的位置,继续刚刚的操作。
3、算法要求:必须采用顺序存储结构,且必须按关键字大小有序排列。
所以可以看出,如果数组中有大量重复元素,二分查找就会很慢。当然大部分时候它都是优于冒泡和递归的。

算法框架

百度百科给出的python算法代码如下:

# bin_search code
def bin_search(data_list, val):    
    low = 0                         # 最小数下标    
    high = len(data_list) - 1       # 最大数下标    
    while low <= high:        
        mid = (low + high) // 2     # 中间数下标        
        if data_list[mid] == val:   # 如果中间数下标等于val, 返回            
            return mid        
        elif data_list[mid] > val:  # 如果val在中间数左边, 移动high下标            
            high = mid - 1        
        else:                       # 如果val在中间数右边, 移动low下标            
            low = mid + 1    
    return <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值