Problem Description
省政府“畅通工程”的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可)。经过调查评估,得到的统计表中列出了有可能建设公路的若干条道路的成本。现请你编写程序,计算出全省畅通需要的最低成本。
Input
测试输入包含若干测试用例。每个测试用例的第1行给出评估的道路条数 N、村庄数目M ( < 100 );随后的 N
行对应村庄间道路的成本,每行给出一对正整数,分别是两个村庄的编号,以及此两村庄间道路的成本(也是正整数)。为简单起见,村庄从1到M编号。当N为0时,全部输入结束,相应的结果不要输出。
Output
对每个测试用例,在1行里输出全省畅通需要的最低成本。若统计数据不足以保证畅通,则输出“?”。
Sample Input
3 3
1 2 1
1 3 2
2 3 4
1 3
2 3 2
0 100
Sample Output
3
?
题目大意
中文题
思路
最小生成树求最低花费,用prim算法就可以了,无坑点,属于比较简单的一题。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100+5;
const int INF=999999999;
int val[maxn][maxn],vis[maxn],dis[maxn],n,m;
int prim()
{
for(int i=1;i<=m;i++)
{
dis[i]=val[i][1];
}
dis[1]=0;
vis[1]=1;
int sum=0;
for(int i=1;i<=m-1;i++)
{
int min=INF,pos;
for(int j=1;j<=m;j++)
{
if(!vis[j]&&min>dis[j])
{
min=dis[j];
pos=j;
}
}
if(min==INF) return 0;
vis[pos]=1;
sum+=dis[pos];
for(int j=1;j<=m;j++)
{
if(!vis[j]&&val[pos][j]<dis[j]&&val[pos][j]!=INF)
dis[j]=val[pos][j];
}
}
return sum;
}
int main()
{
while(~scanf("%d %d",&n,&m)&&n)
{
int star,end,v;
memset(val,0x3f,sizeof(val));
memset(dis,0x3f,sizeof(dis));
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
{
scanf("%d %d %d",&star,&end,&v);
val[star][end]=val[end][star]=v;
}
int ans=prim();
if(ans) printf("%d\n",ans);
else printf("?\n");
}
return 0;
}