用递归的方法解决汉纳塔和青蛙跳台阶问题

一、汉纳塔问题

大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘。问应该如何操作?

void Hanoi(int n,char a,char b,char c)
{
	if (n > 1)
	{
		Hanoi(n - 1, a, c, b);//A柱为起始柱,C柱为中间柱,B柱为目标柱
		printf("%cto%c\n",a,c);//A柱为起始柱,C柱为目标柱
		Hanoi(n - 1, b, a, c);//B柱为起始柱,A柱为中间柱,C柱为目标柱
	}
	else
	{
		printf("%cto%c\n", a, c);
	}
		
}
int main()
{
	char a = 'A';//起始柱
	char b = 'B';//中间柱
	char c = 'C';//目标柱
	int n = 64;
	Hanoi(n,a,b,c);
}

二、青蛙跳台阶问题

(一)一阶段
一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法?

数学函数表示

在这里插入图片描述
code:

int jump1(int n)
{
	if (n > 2)
	{
		return jump1(n - 1) + jump1(n - 2);
	}
	else
	{
		return n;
	}
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	printf("%d", jump1(n));
	return 0;
}

(二)二阶段
一只青蛙一次可以跳上1级台阶,2级台阶,和3级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法?

数学函数表示
在这里插入图片描述

int jump2(int n)
{
	if (n > 3)
	{
		return jump2(n - 1) + jump2(n - 2) + jump2(n - 3);
	}
	else if (n==3)
	{
		return 4;
	}
	else
	{
		return n;
	}
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	printf("%d", jump2(n));
	return 0;
}

(三)三阶段
一只青蛙一次可以跳上1级台阶,2级台阶,3级台阶,和4级台阶。求该青蛙跳上一个n级的台阶总共有多少种跳法?

数学函数表示
在这里插入图片描述

int jump3(int n)
{
	if (n > 4)
	{
		return jump3(n - 1) + jump3(n - 2) + jump3(n - 3)+jump3(n - 4);
	}
	else if (n == 4)
	{
		return 8;
	}
	else if (n == 3)
	{
		return 4;
	}
	else
	{
		return n;
	}
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	printf("%d", jump3(n));
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值