Adaboost模型公式的参数推导

  假设最后根据各个基模型 G i ( x ) i ∈ [ 1 , m ] G_i(x) {i\in[1,m]} Gi(x)i[1,m],各个基模型重要程度为 α i \alpha_i αi加权得到的模型为 f m ( x ) f_m(x) fm(x),其中 y ∈ { − 1 , 1 } y\in{\{-1,1\}} y{1,1}

f m ( x ) = ∑ i = 1 m α i G i ( x ) f_m(x) = \sum_{i = 1}^{m}\alpha_{i} G_i(x) fm(x)=i=1mαiGi(x)
f m ( x ) = ∑ i = 1 m − 1 α i G i ( x ) + α m G m ( x ) f_m(x) = \sum_{i=1}^{m-1}\alpha_{i} G_i(x)+\alpha_m G_m(x) fm(x)=i=1m1αiGi(x)+αmGm(x)
f m ( x ) = f m − 1 ( x ) + α m G m ( x ) f_m(x) = f_{m-1}(x) +\alpha_m G_m(x) fm(x)=fm1(x)+αmGm(x)

  基学习器的损失函数为 L ( y , f ( x ) ) = e − y f ( x ) L(y,f(x)) = e^{-yf(x)} L(y,f(x))=eyf(x)

  所以整个Adaboost模型的损失函数为:
L = ∑ i = 1 n e x p ( − y i f ( x i ) ) L = \sum_{i =1}^{n}{exp{(-y_if(x_i))}} L=i=1nexp(yif(xi))

  该损失函数的 α m \alpha_m αm G m ( x ) G_m(x) Gm(x)是需要求得的

( α m , G m ( x ) ) = a r g m i n α m , G m ∑ i = 1 n e x p ( − y i ( f m − 1 ( x i ) + α m G m ( x i ) ) ) (\alpha_m,G_m(x))= \mathop{argmin}\limits_{\alpha_m,G_m} \sum_{i=1}^{n}exp{(-y_i(f_{m-_1} (x_i)+\alpha_m G_m(x_i)))} (αm,Gm(x))=αm,Gmargmini=1nexp(yi(fm1(xi)+αmGm(xi)))

其中 ∑ i = 1 n e x p ( − y i ( f m − 1 ( x i ) + α m G m ( x i ) ) = ∑ i = 1 n e x p ( − y i f m − 1 ( x i ) ) e x p ( − y i α m G m ( x i ) ) \sum_{i=1}^{n}exp(-y_i(f_{m-1}(x_i)+\alpha_m G_m(x_i))=\sum_{i=1}^{n}exp(-y_if_{m-1}(x_i))exp(-y_i\alpha_m G_m(x_i)) i=1nexp(yi(fm1(xi)+αmGm(xi))=i=1nexp(yifm1(xi))exp(yiαmGm(xi))–(1)

  设 ω i m = e x p ( − y i f m − 1 ( x i ) ) \omega_i^{m} = exp(-y_if_{m-1}(x_i)) ωim=exp(yifm1(xi)),将其带入式(1)得到:

∑ i = 1 n ω i m e x p ( − y i α m G m ( x i ) ) \sum\limits_{i=1}^{n}\omega_ i^ {m} exp(-y_i\alpha_mG_m(x_i)) i=1nωimexp(yiαmGm(xi))–(2)

  当 y i = G m ( x i ) y_i=G_m(x_i) yi=Gm(xi)时, y i G m ( x i ) = 1 y_iG_m(x_i) = 1 yiGm(xi)=1,当 y i ≠ G m ( x i ) y_i\neq G_m(x_i) yi=Gm(xi)时, y i G m ( x i ) = − 1 y_iG_m(x_i) = -1 yiGm(xi)=1,所以式(2)可以写成

   ∑ y i = G m ( x i ) n ω i m e x p ( − α m ) + ∑ y i ≠ G m ( x i ) n ω i m e x p ( α m ) \sum\limits_{y_i=G_m(x_i)}^{n}\omega_{i}^{m}exp(-\alpha_m)+\sum\limits_{y_i \neq G_m(x_i)}^{n}\omega_{i}^{m} exp(\alpha_m) yi=Gm(xi)nωimexp(αm)+yi=Gm(xi)nωimexp(αm)

   = ∑ y i = G m ( x i ) n ω i m e x p ( − α m ) + ∑ y i ≠ G m ( x i ) n ω i m e x p ( α m ) + ∑ y i ≠ G m ( x i ) n ω i m e x p ( − α m ) − ∑ y i ≠ G m ( x i ) n ω i m e x p ( − α m ) =\sum\limits_{y_i=G_m(x_i)}^{n}\omega_{i}^{m}exp(-\alpha_m)+\sum\limits_{y_i \neq G_m(x_i)}^{n} \omega_{i}^{m}exp(\alpha_m) +\sum\limits_{y_i \neq G_m(x_i)}^{n} \omega_{i}^{m}exp(-\alpha_m) -\sum\limits_{y_i \neq G_m(x_i)}^{n} \omega_{i}^{m}exp(-\alpha_m) =yi=Gm(xi)nωimexp(αm)+yi=Gm(xi)nωimexp(αm)+yi=Gm(xi)nωimexp(αm)yi=Gm(xi)nωimexp(αm)

   = e − α m ∑ i = 1 n ω i m − ( e − α m − e α m ) ∑ y i ≠ G m ( x i ) n ω i m =e^{-\alpha_m}\sum_{i=1}^{n}\omega_{i}^{m}-(e^{-\alpha_m}-e^{\alpha_m})\sum\limits_{y_i\neq G_m(x_i)}^{n}\omega_{i}^{m} =eαmi=1nωim(eαmeαm)yi=Gm(xi)nωim

   = e − α m ∑ i = 1 n ω i m − ( e − α m − e α m ) ∑ i = 1 n ω i m I ( y i ≠ G m ( x i ) ) =e^{-\alpha_m}\sum\limits_{i=1}^{n}{\omega_{i}^{m}}-(e^{-\alpha_m}-e^{\alpha_m})\sum\limits_{i=1}^{n} {\omega_{i}^{m}I(y_i \neq G_m(x_i))} =eαmi=1nωim(eαmeαm)i=1nωimI(yi=Gm(xi))–(3)

  要使式(3)最小,则 G m ( x ) G_m(x) Gm(x)应该取 a r g m i n G ∑ i = 1 n ω i m I ( y i ≠ G m ( x i ) ) \mathop{argmin}\limits_{G}\sum\limits_{i=1}^{n}\omega_{i}^{m}I(y_i \neq G_m(x_i)) Gargmini=1nωimI(yi=Gm(xi))

  因为每次求每个点的重要程度时都会除以总和,所以 ∑ i = 1 n ω i m = 1 \sum\limits_{i=1}^{n}{\omega_{i}^{m}}=1 i=1nωim=1,对式(3)中的 α m \alpha_m αm求导得到:

   − e − α m − ( − e − α m − e α m ) ∑ i = 1 n ω i n I ( y i ≠ G m ( x i ) ) = 0 -e^{-\alpha_m}-(-e^{-\alpha_m}-e^{\alpha_m})\sum\limits_{i=1}^{n}\omega_{i}^{n}I(y_i \neq G_m(x_i)) = 0 eαm(eαmeαm)i=1nωinI(yi=Gm(xi))=0

   e − α m ( 1 − ∑ i = 1 n ω i n I ( y i ≠ G m ( x i ) ) ) = e α m ∑ i = 1 n I ( y i ≠ G m ( x i ) ) e^{-\alpha_m}(1-\sum\limits_{i=1}^{n}{\omega_{i}^{n}I(y_i\neq G_m(x_i))})= e^{\alpha_m}\sum\limits_{i=1}^{n}I(y_i \neq G_m(x_i)) eαm(1i=1nωinI(yi=Gm(xi)))=eαmi=1nI(yi=Gm(xi))–(4)

  令 ∑ i = 1 n ω i = 1 n I ( y i ≠ G m ( x i ) ) = e m \sum\limits_{i=1}^{n}\omega_{i=1}^{n}I(y_i \neq G_m(x_i))= e_m i=1nωi=1nI(yi=Gm(xi))=em

  化简式(4)得到 α m = 1 2 l n ( 1 − e m e m ) \alpha_m = \frac{1}{2}ln(\frac{1-e_m}{e_m}) αm=21ln(em1em)

  因为 ω i m = e x p ( − y i f m − 1 ( x i ) ) \omega_i^{m} = exp(-y_if_{m-1}(x_i)) ωim=exp(yifm1(xi))可以推导得

ω i m + 1 = e x p ( − y i f m ( x i ) ) = e x p ( − y i ( f m − 1 ( x i ) + α m G m ( x i ) ) ) = e x p ( − y i f m − 1 ) e x p ( − y i α m G m ( x i ) ) \omega_i^{m+1} = exp(-y_if_{m}(x_i))=exp(-y_i(f_{m-1}(x_i)+\alpha_m G_m(x_i)))=exp(-y_if_{m-1})exp(-y_i \alpha_m G_m(x_i)) ωim+1=exp(yifm(xi))=exp(yi(fm1(xi)+αmGm(xi)))=exp(yifm1)exp(yiαmGm(xi))

= ω i m e x p ( − y i α m G m ( x i ) ) =\omega_{i}^{m}exp(-y_i\alpha_m G_m(x_i)) =ωimexp(yiαmGm(xi))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值