线性回归模型的公式推导
y = θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 3 + . . . + θ m x m \theta_0 +\theta_1 x_1+\theta_2 x_2+\theta_3 x_3+...+\theta_m x_m θ0+θ1x1+θ2x2+θ3x3+...+θmxm
因为现在需要有n个样本,每个样本有m个特征,为了将常数项加如矩阵,加入一列特征,所以有n行m+1列,矩阵大小为n*(m+1)
为了将常数项 θ 0 \theta_0 θ0包括进参数 θ \theta θ的矩阵中,我们需要将 θ \theta θ的维度扩充到m+1维。所以 θ \theta θ的矩阵有m+1行,矩阵大小为(m+1)*1
因为是是n中标签,所以y的大小为n*1
X = ( 1 x 1 1 x 2 1 . . x m 1 1 x 1 2 x 1 2 . . x m 2 . . . . . . . . . . . . 1 x 1 n − 1 x 2 n − 1 . . x m n − 1 1 x 1 n x 2 n . . x m n ) n ∗ ( m + 1 ) θ = ( θ 0 θ 1 . . θ m − 1 θ m ) ( m + 1 ) ∗ 1 Y = (