线性回归模型的公式推导

本文详细介绍了线性回归模型的公式推导,通过添加常数项构建n行m+1列的特征矩阵X,以及m+1行1列的参数矩阵θ,最终得出线性模型Y=X*θ。采用最小二乘法作为损失函数,并通过求导计算得到最佳参数θ=(XTX)^(-1)XTY,进一步讨论了梯度下降法在求解线性回归中的应用。
摘要由CSDN通过智能技术生成

线性回归模型的公式推导

y = θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 3 + . . . + θ m x m \theta_0 +\theta_1 x_1+\theta_2 x_2+\theta_3 x_3+...+\theta_m x_m θ0+θ1x1+θ2x2+θ3x3+...+θmxm

因为现在需要有n个样本,每个样本有m个特征,为了将常数项加如矩阵,加入一列特征,所以有n行m+1列,矩阵大小为n*(m+1)

为了将常数项 θ 0 \theta_0 θ0包括进参数 θ \theta θ的矩阵中,我们需要将 θ \theta θ的维度扩充到m+1维。所以 θ \theta θ的矩阵有m+1行,矩阵大小为(m+1)*1

因为是是n中标签,所以y的大小为n*1
X = ( 1 x 1 1 x 2 1 . . x m 1 1 x 1 2 x 1 2 . . x m 2 . . . . . . . . . . . . 1 x 1 n − 1 x 2 n − 1 . . x m n − 1 1 x 1 n x 2 n . . x m n ) n ∗ ( m + 1 ) θ = ( θ 0 θ 1 . . θ m − 1 θ m ) ( m + 1 ) ∗ 1 Y = (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值