【问题】:进制转化算法(迭代版&递归版)

代码
#include <iostream>
#include <cstdio>
#include <stack>
#include <ctime>

#define BASE 13

using namespace std;

/**
 *  @brief  十进制转化成任意进制 (迭代版) 
 *  @param  s   用来保存结果的栈 
 *  @param  n   待转换的十进制数 
 *  @param  base    转换成的进制 
 *  @return  
 *
*/
void convertI(stack<char>& s,__int64 n, int base) 
{

    static char digit[]=
    {
        '0','1','2','3','4','5','6','7','8','9',
        'A','B','C','D','E','F'
    };
    while(n>0)
    {
        s.push(digit[n%base]) ;
        n/=base;        
    }
}

/**
 *  @brief  十进制转化成任意进制 (递归版) 
 *  @param  s   用来保存结果的栈 
 *  @param  n   待转换的十进制数 
 *  @param  base    转换成的进制 
 *  @return  
 *
*/
void convertR(stack<char>& s,__int64 n, int base) 
{

    static char digit[]=
    {
        '0','1','2','3','4','5','6','7','8','9',
        'A','B','C','D','E','F'
    };
    if(0<n)
    {
        convertR(s,n/base,base);
        //通过递归,得到所有更高位。(也就是说递归应该是一下子递归到底,
        //直到递归基,然后由递归基逐层上推) 
        s.push(digit[n%base]);
    }
}

int main()
{
    stack<char> a;
    __int64 n;
    cin>>n;

    clock_t st,en;clock_t st1,en1;
    cout<<"\n十进制数"<<n<<"转化成"<<BASE<<"进制 (迭代版)\n" ;
    st=clock();
    convertI(a,n,BASE);
    while(!a.empty())
    {   
        printf("%c",a.top());
        a.pop();
    }
    en=clock();
    cout<<"\n总用时t="<<(double)(en-st)/CLOCKS_PER_SEC<<"s\n";

    cout<<"\n十进制数"<<n<<"转化成"<<BASE<<"进制 (递归版)\n" ;
    st1=clock();
    convertR(a,n,BASE);
    while(!a.empty())
    {   
        printf("%c",a.top());
        a.pop();
    }
    en1=clock();
    cout<<"\n总用时t="<<(double)(en1-st1)/CLOCKS_PER_SEC<<"s\n";
    cout<<endl; 

    return 0;
}
两种算法算出的结果居然是倒着的!

这个意外对于我来说是件好事,让我更加深刻地理解了递归,以12345转换成16进制为例:

void convertR(stack<char>& s,__int64 n, int base) 
{   
    static char digit[]=
    {
        '0','1','2','3','4','5','6','7','8','9',
        'A','B','C','D','E','F'
    };
    if(0<n)
    {
        convertR(s,n/base,base);
        //通过递归,得到所有更高位。(也就是说递归应该是一下子递归到底,
        //直到递归基,然后由递归基逐层上推) 
        s.push(digit[n%base]);
        cout<<"n="<<n<<",进栈字符="<<digit[n%base]<<", top="<<s.top()<<endl; 
    }
}//新进制的数位,由高到低,自底而上(顶)存放于栈s中 

递归的过程是:
* n=123456->(n>0)->convertR(s,n/base,base)
* n=7716->(n>0)->convertR(s,n/base,base)
* n=482->(n>0)->convertR(s,n/base,base)
* n=30->(n>0)->convertR(s,n/base,base)
* n=1->(n>0)->convertR(s,n/base,base)
* n=0->(n>0)->
* n=1->(n>0)->s.push(digit[n%base])->push(1)
* n=30->(n>0)->s.push(digit[n%base])->push(E)
* n=482->(n>0)->s.push(digit[n%base])->push(2)
* n=7716->(n>0)->s.push(digit[n%base])->push(4)
* n=123456->(n>0)->s.push(digit[n%base])->push(0)
所以最终栈自顶而下,保存的是新进制的从低到高位,而输出的话,要按照从高到低输出,所以最终输出的结果是反的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值