Description
You are given string s consists of opening and closing brackets of four kinds <>, {}, [], (). There are two types of brackets: opening and closing. You can replace any bracket by another of the same type. For example, you can replace < by the bracket {, but you can't replace it by ) or >.
The following definition of a regular bracket sequence is well-known, so you can be familiar with it.
Let's define a regular bracket sequence (RBS). Empty string is RBS. Let s1 and s2 be a RBS then the strings <s1>s2, {s1}s2, [s1]s2,(s1)s2 are also RBS.
For example the string "[[(){}]<>]" is RBS, but the strings "[)()" and "][()()" are not.
Determine the least number of replaces to make the string s RBS.
Input
The only line contains a non empty string s, consisting of only opening and closing brackets of four kinds. The length of s does not exceed 106.
Output
If it's impossible to get RBS from s print Impossible.
Otherwise print the least number of replaces needed to get RBS from s.
Sample Input
Input[<}){}Output2Input{()}[]Output0Input]]OutputImpossible
题意:现在有一段字符串,称'<'、'{'、'['、'('为开类型,反之为闭类型,只有开类型可以转换,现在问最少得转换多少次才使得整个字符串中括号配对,如过不行就输出“Impossible”.
思路:用栈模拟,遍历字符串数组,只能放进开类型,当遇到闭类型时,如果栈顶的字符是和它匹配的就不用转换,否则需要转换;当遇到闭类型时,如果栈为空的话,这个时候就是“Impossible”,因为闭类型不能转换成开类型。最后如果栈不为空也是“Impossible”。当时理解错题意了。
#include <cstdio> #include <algorithm> #include <cstring> #include <stack> using namespace std; char s[1000000]; char p(char a) { if(a=='{') return '}'; if(a=='<') return '>'; if(a=='[') return ']'; if(a=='(') return ')'; } int main() { while(~scanf("%s", s)) { stack<char> sta; int len = strlen(s); int t = 0; for(int i = 0;i < len;i++) { if(s[i]=='<'||s[i]=='{'||s[i]=='['||s[i]=='(') sta.push(s[i]); else if(!sta.empty()) { if(p(sta.top()) != s[i]) t++; sta.pop(); } else { printf("Impossible\n"); return 0; } } if(!sta.empty()) printf("Impossible\n"); else printf("%d\n", t); } }