Appoint description:
Description
Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了。要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的。Speakless没有多少钱,总共只攒了n万美元。他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。帮帮这个可怜的人吧,帮助他计算一下,他可以收到至少一份offer的最大概率。(如果Speakless选择了多个学校,得到任意一个学校的offer都可以)。
Input
输入有若干组数据,每组数据的第一行有两个正整数n,m(0<=n<=10000,0<=m<=10000)
后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。
输入的最后有两个0。
后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。
输入的最后有两个0。
Output
每组数据都对应一个输出,表示Speakless可能得到至少一份offer的最大概率。用百分数表示,精确到小数点后一位。
Sample Input
10 3 4 0.1 4 0.2 5 0.3 0 0
Sample Output
44.0%假设他同时向两所学校申请,录取概率分别为a,b
他没被录取的概率是(1-a)*(1-b)
那么他被录取的概率是1-(1-a)*(1-b)
f[j] = max{f[j],1-(1-f[j-c[i]])*(1-w[i])}
max中的f[j]表示分析完上一所学校之后j万元能够获取的最大被录取概率
如果等号左边的f[j]等于max中的f[j],就说明花费j万元时不向第i校申请,所以和第i-1校时的j万元所获取的最大被录取概率一样。
max中的(1-(1-f[j-c[i]])*(1-w[i]))表示选择了i校之后被录取的概率。
f[j-c[i]]:除去i校的申请费之后,用剩余的钱所获取的被录取最大概率。
理解概率怎么算,列出动态方程就好做了。