*【杭电1203】录取概率

I NEED A OFFER!
Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
Appoint description: 

Description

Speakless很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了。要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的。Speakless没有多少钱,总共只攒了n万美元。他将在m个学校中选择若干的(当然要在他的经济承受范围内)。每个学校都有不同的申请费用a(万美元),并且Speakless估计了他得到这个学校offer的可能性b。不同学校之间是否得到offer不会互相影响。“I NEED A OFFER”,他大叫一声。帮帮这个可怜的人吧,帮助他计算一下,他可以收到至少一份offer的最大概率。(如果Speakless选择了多个学校,得到任意一个学校的offer都可以)。 

Input

输入有若干组数据,每组数据的第一行有两个正整数n,m(0<=n<=10000,0<=m<=10000) 
后面的m行,每行都有两个数据ai(整型),bi(实型)分别表示第i个学校的申请费用和可能拿到offer的概率。 
输入的最后有两个0。 

Output

每组数据都对应一个输出,表示Speakless可能得到至少一份offer的最大概率。用百分数表示,精确到小数点后一位。 

Sample Input

10 3
4 0.1
4 0.2
5 0.3
0 0

Sample Output

44.0%

假设他同时向两所学校申请,录取概率分别为a,b
他没被录取的概率是(1-a)*(1-b)
那么他被录取的概率是1-(1-a)*(1-b)
f[j] = max{f[j],1-(1-f[j-c[i]])*(1-w[i])}
max中的f[j]表示分析完上一所学校之后j万元能够获取的最大被录取概率
如果等号左边的f[j]等于max中的f[j],就说明花费j万元时不向第i校申请,所以和第i-1校时的j万元所获取的最大被录取概率一样。
max中的(1-(1-f[j-c[i]])*(1-w[i]))表示选择了i校之后被录取的概率。
f[j-c[i]]:除去i校的申请费之后,用剩余的钱所获取的被录取最大概率。
理解概率怎么算,列出动态方程就好做了。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
double dp[11000];
int f[11000];
double p[11000];
int main()
{
	int n,m;
	while(~scanf("%d%d",&n,&m),(n||m))
	{
		memset(dp,0,sizeof(dp));
		for(int i=1;i<=m;i++)
			scanf("%d%lf",&f[i],&p[i]);
			for(int i=1;i<=m;i++)
			{
				for(int j=n;j>=f[i];j--)
				dp[j]=max(dp[j],1-(1-dp[j-f[i]])*(1-p[i]));
			}
			printf("%.1lf%%\n",dp[n]*100);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值