基准时间限制:1 秒 空间限制:131072 KB 分值: 20
难度:3级算法题
B国拥有n个城市,其交通系统呈树状结构,即任意两个城市存在且仅存在一条交通线将其连接。A国是B国的敌国企图秘密发射导弹打击B国的交通线,现假设每条交通线都有50%的概率被炸毁,B国希望知道在被炸毁之后,剩下联通块的个数的期望是多少?
Input
一个数n(2<=n<=100000) 接下来n-1行,每行两个数x,y表示一条交通线。(1<=x,y<=n) 数据保证其交通系统构成一棵树。
Output
一行一个数,表示答案乘2^(n-1)后对1,000,000,007取模后的值。
Input示例
3 1 2 1 3
Output示例
8
因为每炸毁一条边就多出一个连通图,所以最优是一个连通,最差是
n
个连通。选择一条边的概率是1/2
,选择n
条边就是1/2^(n-1)
,那么最后题目要求乘以2^(n-1)
,所以抵消了。
那么公式原型就是:
1+2∗C(n−1,1)+3∗C(n−1,2)+...+n∗C(n−1,n−1)
然后经过打表发现该序列的通式为:
ans[i]=2*ans[i-1]+2^(i-2),ans[1]=1
代码
#include<cstdio> const int M=1e9+7; const int N = 1e5 + 5; long long ans[N]; //快速幂 long long p(long long a,long long b,long long c) { long long t=1;a=a%c; while(b>0){ if(b%2==1) t=t*a%c; b=b/2; a=a*a%c; } return t; } int main() { ans[1]=1; for(int i=2;i<N;i++) { ans[i]=2*ans[i-1]+p(2,i-2,M); ans[i]=ans[i]%M; } int n,x,y; while(scanf("%d",&n)!=EOF){ for(int i=0;i<n-1;i++) scanf("%d%d",&x,&y); printf("%lld\n",ans[n]); } return 0; }