51nod-1632B君的连通

基准时间限制:1 秒 空间限制:131072 KB 分值: 20  难度:3级算法题
 收藏
 关注

B国拥有n个城市,其交通系统呈树状结构,即任意两个城市存在且仅存在一条交通线将其连接。A国是B国的敌国企图秘密发射导弹打击B国的交通线,现假设每条交通线都有50%的概率被炸毁,B国希望知道在被炸毁之后,剩下联通块的个数的期望是多少?


Input
一个数n(2<=n<=100000)
接下来n-1行,每行两个数x,y表示一条交通线。(1<=x,y<=n)
数据保证其交通系统构成一棵树。
Output
一行一个数,表示答案乘2^(n-1)后对1,000,000,007取模后的值。
Input示例
3
1 2
1 3
Output示例
8

因为每炸毁一条边就多出一个连通图,所以最优是一个连通,最差是n个连通。选择一条边的概率是1/2,选择n条边就是1/2^(n-1),那么最后题目要求乘以2^(n-1),所以抵消了。 
那么公式原型就是:

1+2∗C(n−1,1)+3∗C(n−1,2)+...+n∗C(n−1,n−1)

然后经过打表发现该序列的通式为:

ans[i]=2*ans[i-1]+2^(i-2),ans[1]=1

代码

#include<cstdio>
const int M=1e9+7;
const int N = 1e5 + 5;
long long ans[N];
//快速幂
long long p(long long a,long long b,long long c) 
{
	long long t=1;a=a%c;
	while(b>0){
		if(b%2==1)
			t=t*a%c;
			b=b/2;
			a=a*a%c;
		
	}
	return t;
}
int main()
{
	ans[1]=1;
	for(int i=2;i<N;i++)
	{
		ans[i]=2*ans[i-1]+p(2,i-2,M);
		ans[i]=ans[i]%M;
	}
	int n,x,y;
	while(scanf("%d",&n)!=EOF){
		for(int i=0;i<n-1;i++)
		scanf("%d%d",&x,&y);
		printf("%lld\n",ans[n]);
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值