1.输入
推荐使用这种的输入,读取的数据量大的时候,速度更快。
static class InputReader {
private BufferedReader bf = null;
private StringTokenizer stz = null;
public InputReader() {
bf = new BufferedReader(new InputStreamReader(System.in),32*1024);
}
public boolean hasNext() {
while(stz == null || !stz.hasMoreTokens()) {
try {
stz = new StringTokenizer(bf.readLine());
} catch (IOException e) {
return false;
}
}
return true;
}
public String next() {
if(hasNext()) {
return stz.nextToken();
}
return null;
}
public int nextInt() {
return Integer.parseInt(next());
}
public double nextDouble() {
return Double.parseDouble(next());
}
}
2.进制转换
十进制转换成n进制
InputReader sc = new InputReader();
int num = sc.nextInt();
System.out.println(Integer.toString(num, 16));//这里是转成16进制
n进制转换成十进制
InputReader sc = new InputReader();
String str = sc.next();
System.out.println(Integer.valueOf(str, 16));//这里代表字符串使用16进制表示的
以上处理的进制问题没有考虑溢出问题。也就是某个进制代表的数字很大,int类型不足以表示
n进制转换十进制(推荐)
InputReader sc = new InputReader();
String str = sc.next();
BigInteger bigInteger = new BigInteger(str, 16);
System.out.println(bigInteger);
3. 日期运算(Calendar的API使用)
真题:世纪末的星期
1999年的12月31日是星期五,请问:未来哪一个离我们最近的一个世纪末年(即xx99年)的12月31日正好是星期天(即星期日)?
请回答该年份(只写这个4位整数,不要写12月31等多余信息)。
public static void main(String[] args) {
Calendar calendar = Calendar.getInstance();
for (int i = 1999; i < 10000; i+=100) {
calendar.set(i, 11, 31);//月份从0开始计算
if(calendar.get(Calendar.DAY_OF_WEEK) == 1) {
System.out.println(i); //2299
break;
}
}
}
(补充)滑动窗口
待更新
4.递归
递归就是思考解决问题的方向是自顶向下的
4.1. 最常用的递归就是全排列
不带重复排列的全排列
public class Main {
static int[] arr = {1,1,3,3};
static boolean[] vis = new boolean[arr.length];
static int[] res = new int[arr.length];
static HashSet<String> hashSet = new HashSet<String>();
public static void main(String[] args) {
f(0);
}
private static void f(int cur) {
String str = "";
if(cur == arr.length) {
for(int i=0;i<arr.length;i++) {
str += arr[i];
}
if(!hashSet.contains(str)) {
hashSet.add(str);
System.out.println(str);
}
return;
}
for (int i = cur; i < arr.length; i++) {
swap(i,cur);
f(cur+1);
swap(i,cur);
}
}
private static void swap(int a,int b) {
int t = arr[a];
arr[a] = arr[b];
arr[b] = t;
}
}
4.2. 递归转递推
4.3. DFS(搜索+检查)
标题: 振兴中华
小明参加了学校的趣味运动会,其中的一个项目是:跳格子。
地上画着一些格子,每个格子里写一个字,如下所示
从我做起振
我做起振兴
做起振兴中
起振兴中华
比赛时,先站在左上角的写着“从”字的格子里,可以横向或纵向跳到相邻的格子里,但不能跳到对角的格子或其它位置。一直要跳到“华”字结束。
要求跳过的路线刚好构成“从我做起振兴中华”这句话。
请你帮助小明算一算他一共有多少种可能的跳跃路线呢?
思路:将“从我做起振兴中华”用数字0到7代替从0开始往下和往右深搜
static int[][] arr = {
{ 0, 1, 2, 3, 4 },
{ 1, 2, 3, 4, 5 },
{ 2, 3, 4, 5, 6 },
{ 3, 4, 5, 6, 7 }
};
static boolean[][] visited = new boolean[4][5];
public static void main(String[] args) {
int ans = dfs(0,0,0);
System.out.println(ans); //35
}
/**
*
* @param x
* @param y x ,y 是坐标
* @param cur 当前应该是第几个数字
*/
private static int dfs(int x, int y,int cur) {
int res = 0;
visited[x][y] = true;
if(cur == 7 && arr[x][y] == 7) {
return 1;
}
if(inArea(x+1,y) && !visited[x+1][y]) {
res+=dfs(x+1,y,cur+1);
visited[x+1][y] = false;//回溯
}
if(inArea(x,y+1)&& !visited[x][y+1]) {
res+=dfs(x,y+1,cur+1);
visited[x][y+1] = false;//回溯
}
return res;
}
private static boolean inArea(int x, int y) {
if(x>=0 && x < 4 && y>=0 && y < 5) {
return true;
}
return false;
}
当然这是最一般的解法,但是题目给的数据比较特殊,从左上到右下每一个位置,都可以往下或者右走,并且一定只能是这个顺序。于是可以这样写
public static void main(String[] args) {
int ans = f(0,0);
System.out.println(ans); //35
}
private static int f(int x, int y) {
int res = 0;
if(x==3 && y== 4) {
return 1;
}
if(x+1>=0 && x+1<=3)
res+= f(x+1,y);
if(y+1>=0 && y+1<=4)
res+= f(x, y+1);
return res;
}
4.3 记忆型递归与博弈型问题
待更新。。。
5.枚举,全排列暴力解法
标题1:六角填数
如图【1.png】所示六角形中,填入1~12的数字。
使得每条直线上的数字之和都相同。
图中,已经替你填好了3个数字,请你计算星号位置所代表的数字是多少?
思路: 按照从上到下,从左到右对还没有填入的数字进行编号,题目转换为求下标为3的那个数是多少
public static void main(String[] args) {
int[] arr = {2,4,5,6,7,9,10,11,12};
f(arr,0);//全排列
}
private static void f(int[] arr,int cur) {
if(cur == arr.length) {
check(arr);
return;
}
for(int i=cur;i<arr.length;i++) {
swap(arr,i,cur);
f(arr,cur+1);
swap(arr,i,cur);
}
}
private static void check(int[] arr) {
int r1 = 1 + arr[0]+arr[3]+arr[5];
int r2 = 1 + arr[1]+arr[4]+arr[8];
int r3 = 8 + arr[0]+arr[1]+arr[2];
int r4 = 11 + arr[6]+arr[3];
int r5 = 3 + arr[2]+arr[4]+arr[7];
int r6 = arr[5] + arr[6]+arr[7]+arr[8];
if(r1==r2&&r2==r3&&r3==r4&&r4==r5&&r5==r6) {
for(int i=0;i<arr.length;i++) {
System.out.print(arr[i]+" "); //9 2 7 10 12 6 5 4 11 所以答案为10
}
}
}
private static void swap(int[] arr, int i, int cur) {
int t = arr[i];
arr[i] = arr[cur];
arr[cur] = t;
}
再举个例子
生日蜡烛
某君从某年开始每年都举办一次生日party,并且每次都要吹熄与年龄相同根数的蜡烛。
现在算起来,他一共吹熄了236根蜡烛。
请问,他从多少岁开始过生日party的?
请填写他开始过生日party的年龄数。
static int sum(int start, int end) {
return (start+end) * (end - start +1) /2;//等差数列求和公式
}
public static void main(String[] args) {
for (int start = 1; start < 100; start++) {
for (int end = start + 1; end < 100; end++) {
if(sum(start,end) == 236) {
System.out.println(start +" " +end);//26 33 所以答案就是26
}
}
}
}
6.快速幂运算
public static int quickExp(int n,int m) {
int res = 1;
while(m > 0) {
if((m&1)==1) {
res *= n;
}
n = n*n;
m = m>>1;
}
return res;
}
7.矩阵运算
矩阵乘法运算
private static int[][] multiple(int[][] m1, int[][] m2) {
int[][] res = new int[m1.length][m2[0].length];
for(int i=0;i<m1.length;i++) {
for(int j=0;j<m2[i].length;j++) {
for(int k=0;k<m2.length;k++) {
res[i][j] += m1[i][k]* m2[k][j];
}
}
}
return res;
}
矩阵快速幂运算
private static int[][] quickExp(int[][] m, int n) {
int[][] res = new int[N][N];
for(int i=0;i<N;i++) {
for (int j = 0; j < N; j++) {
if(i == j) res[i][j] = 1;
else res[i][j] = 0;
}
}
while(n>0) {
if((n & 1) == 1)
res = multiple(res, m); //调用的是上面的矩阵乘法公式
m = multiple(m, m);
n = n>>1;
}
return res;
}
应用:快速求斐波那契数O(logn)的时间复杂度。(在最后会提到)
8.贪心
9.动态规划(dp)(*****)
前面讲过递归就是思考解决问题的方向是自顶向下的,而动态规划是恰恰相反。
不过,通常在解决问题的时候,我们应该先要自顶向下的思考,因为自顶向下思考问题,比较简单。
[引用自leetcode上的一个例子] 如果一个问题是动态规划问题,它应该具有 「最优子结构」 的。要符合 「最优子结构」 ,子问题间必须互相独立。啥叫相互独立?你肯定不想看数学证明,我用一个直观的例子来讲解。比如说,你的原问题是考出最高的总成绩,那么你的子问题就是要把语文考到最高,数学考到最高…… 为了每门课考到最高,你要把每门课相应的选择题分数拿到最高,填空题分数拿到最高…… 当然,最终就是你每门课都是满分,这就是最高的总成绩。
得到了正确的结果:最高的总成绩就是总分。因为这个过程符合最优子结构,“每门科目考到最高”这些子问题是互相独立,互不干扰的。
但是,如果加一个条件:你的语文成绩和数学成绩会互相制约,此消彼长。这样的话,显然你能考到的最高总成绩就达不到总分了,按刚才那个思路就会得到错误的结果。因为子问题并不独立,语文数学成绩无法同时最优,所以最优子结构被破坏。
从最简单的dp开始
例1:leetcode 70 爬楼梯
与斐波那契数列类似
class Solution {
private int[] memo;
public int climbStairs(int n) {
if (n == 1) return 1;
if (n == 2) return 2;
memo = new int[n + 1];
memo[1] = 1;
memo[2] = 2;
for (int i = 3; i < n + 1; i++) {
memo[i] = memo[i - 1] + memo[i - 2];
}
return memo[n];
}
}
如果感觉没问题的话,可以练习下面两道题:
leetcode120 Triangle
leetcode 64 Minimum Path Sum
例2:整数拆分
2.1 简单递归解法
分析:
class Solution {
public int integerBreak(int n) {
return breakInteger(n);
}
//计算n的拆分乘积最大值,注意:一定会将n至少分成两部分
private int breakInteger(int n) {
if (n == 1)
return 1;
int res = 0;
for (int i = 1; i < n; i++) {
res = max3(res,i * (n-i),i * breakInteger(n - i));
}
return res;
}
private int max3(int a, int b, int c) {
return Math.max(Math.max(a, b), c);
}
// public static void main(String[] args) {
// System.out.println(new Solution().integerBreak(4));
//}
}
得到结果:
2.2 记忆型递归
记忆型递归的技巧,在每个求出结果的地方记录,在递归之前查询。
class Solution {
private int[] memo; //memeo[i]代表第i个的拆分最大乘积
public int integerBreak(int n) {
memo = new int[n+1];
return breakInteger(n);
}
//计算n的拆分乘积最大值,注意:一定会将n至少分成两部分
private int breakInteger(int n) {
if (n == 1)
return 1;
if(memo[n]!=0)
return memo[n];
int res = 0;
for (int i = 1; i < n; i++) {
res = max3(res,i * (n-i),i * breakInteger(n - i));
}
memo[n] = res;
return res;
}
private int max3(int a, int b, int c) {
return Math.max(Math.max(a, b), c);
}
//public static void main(String[] args) {
// System.out.println(new Solution().integerBreak(10));
// }
}
2.3 动态规划(自底向上)
class Solution {
public int integerBreak(int n) {
int[] dp = new int[n + 1];
dp[1] = 1;
for (int i = 2; i < n + 1; i++) {
for (int j = 1; j <= i-1; j++) {
dp[i] = max3(dp[i], j * (i - j), j * dp[i-j]);
}
}
return dp[n];
}
private int max3(int a, int b, int c) {
return Math.max(Math.max(a, b), c);
}
public static void main(String[] args) {
System.out.println(new Solution().integerBreak(5));
}
}
leetcode练习:
279. 完全平方数
91. 解码方法
62. 不同路径
63. 不同路径 II
例3:打家劫舍
3.1 递归写法(自下而上)
状态的定义:考虑偷取[ x … n-1]范围的房子 。通常把对状态的定义也叫做函数的定义
class Solution {
public int rob(int[] nums) {
return tryRob(nums, 0);
}
private int tryRob(int[] nums, int start) {//start代表从哪个位置开始
if(start >= nums.length){
return 0;
}
int res = 0;
// res = Math.max(tryRob(nums, start + 1), nums[i] + tryRob(nums, i + 2));
// 这也是一种递归写法。
for (int i = start; i < nums.length; i++) {
res = Math.max(res, nums[i] + tryRob(nums, i + 2));
}
return res;
}
}
3.2 记忆型递归
class Solution {
private int[] memo;
public int rob(int[] nums) {
memo = new int[nums.length];
return tryRob(nums, 0);
}
private int tryRob(int[] nums, int start) {//start代表从哪个位置开始
if(start >= nums.length){
return 0;
}
//开始前查询
if(memo[start]!=0)
return memo[start];
int res = 0;
for (int i = start; i < nums.length; i++) {
res = Math.max(res, nums[i] + tryRob(nums, i + 2));
}
//返回结果前记录
memo[start] = res;
return res;
}
}
3.3 动态规划(自顶向下)
class Solution {
private int[] dp;//dp[index] 代表从index的位置开始到最后一间房抢到的价值最大值
private int n;
public int rob(int[] nums) {
this.n = nums.length;
if(nums.length == 0) return 0;
dp = new int[n];
dp[n - 1] = nums[n - 1];//只有一个房间,那就抢。不用考虑------最基本问题
//考虑从i开始抢到的价值最大值
for (int i = n - 2; i >= 0; i--) {
for (int j = i; j < n; j++)
dp[i] = Math.max(dp[i], ((j + 2) < n ? dp[j + 2] : 0 ) + nums[j]);//一定要用已知的结果
}
return dp[0];
}
}
思考: 如果状态这样定义:考虑偷取[ 0 … x ]范围里的房子 。
3.1 递归写法
class Solution {
public int rob(int[] nums) {
if (nums.length == 0) return 0;
return tryRob02(nums, nums.length - 1);
}
private int tryRob02(int[] nums, int end) {
if (end < 0) {
return 0;
}
int res = 0;
for (int i = end; i >= 0; i--) {//这里对[end....0]的每一个尝试偷取
res = Math.max(res, nums[i] + tryRob02(nums, i - 2));//从[end...0]这多个分支中取得最大值
}
return res;
}
public static void main(String[] args) {
long start = System.currentTimeMillis();
int[] nums = {2,7,9,3,1};
System.out.println(new Solution().rob(nums));
long end = System.currentTimeMillis();
System.out.println(end - start + "ms");
}
}
3.2 记忆型递归
class Solution {
private int[] memo;
public int rob(int[] nums) {
if (nums.length == 0) return 0;
memo = new int[nums.length];
return tryRob02(nums, nums.length - 1);
}
private int tryRob02(int[] nums, int end) {
if (end < 0) {
return 0;
}
//递归前查询
if (memo[end] != 0)
return memo[end];
int res = 0;
for (int i = end; i >= 0; i--) {//这里对[end....0]的每一个尝试偷取
res = Math.max(res, nums[i] + tryRob02(nums, i - 2));//从[end...0]这多个分支中取得最大值
}
//返回结果前记录
memo[end] = res;
return res;
}
}
3.3 动态规划
class Solution {
private int[] dp;//dp[index] 表示从0~index范围偷取的最大值
private int n;
public int rob(int[] nums) {
if (nums.length == 0) return 0;
this.n = nums.length;
dp = new int[n];
//找到最基本的问题的解
dp[0] = nums[0];
//由已知解逐步递推
for (int i = 1; i < n; i++) {
for (int j = i; j >= 0; j--) {
dp[i] = Math.max(dp[i], nums[j] + (j - 2 >= 0 ? dp[j - 2] : 0));
}
}
return dp[n-1];
}
}
4. 01背包问题
4.1递归解法
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.StringTokenizer;
/**
* 01背包的状态方程 F(n,c) n代表前n个物品,c代表背包容量
* F(i,c) = max( F(i-1,c) , v[i] + F(i,c-v[i]) )
*/
public class Main {
/**
* @param w 重量
* @param v 价值
* @param c 背包容量
* @return
*/
public static int knapsack01(int[] w, int[] v, int c) {
return bestValue(w, v, 0, c);
}
private static int bestValue(int[] w, int[] v, int index, int c) {
if (index >= w.length || c <= 0)
return 0;
int res = bestValue(w, v, index + 1, c);
if (c > w[index])
res = Math.max(res, v[index] + bestValue(w, v, index + 1, c - w[index]));
return res;
}
public static void main(String[] args) {
InputReader sc = new InputReader();
int n = sc.nextInt();
int c = sc.nextInt();
int[] v = new int[n];
int[] w = new int[n];
for (int i = 0; i < n; i++) {
w[i] = sc.nextInt();
v[i] = sc.nextInt();
}
System.out.println(knapsack01(w, v, c));
}
/*
* 下面就是输入类,之前介绍过了。可以不用在意
*/
static class InputReader {
private BufferedReader bf;
private StringTokenizer stz;
public InputReader() {
bf = new BufferedReader(new InputStreamReader(System.in), 32 * 1014);
stz = null;
}
public boolean hasNext() {
while (stz == null || !stz.hasMoreTokens()) {
try {
stz = new StringTokenizer(bf.readLine());
} catch (IOException e) {
return false;
}
}
return true;
}
public String next() {
if (hasNext())
return stz.nextToken();
return null;
}
public int nextInt() {
return Integer.parseInt(next());
}
}
}
4.2 记忆型递归(核心代码)
注意memo的开辟空间
private int bestValue(int[] w, int[] v, int index, int c) {
if (index > w.length || c <= 0)
return 0;
//递归前查询
if(memo[index][c] != 0)
return memo[index][c];
int res = bestValue(w, v, index + 1, c);
if (c > w[index])
res = Math.max(res, v[index] + bestValue(w, v, index + 1, c - w[index]));
//返回前记录
memo[index][c] = res;
return res;
}
4.3 动态规划(核心)
private int[][] dp; //dp[index][c]代表 背包容量剩余c和可选[0,index]物品的价值最大值
private int n;
/**
* @param w 重量
* @param v 价值
* @param c 背包容量
* @return
*/
public int knapsack01(int[] w, int[] v, int c) {
dp = new int[w.length][c + 1];
n = w.length;
return bestValue(w, v, 0, c);
}
private int bestValue(int[] w, int[] v, int index, int c) {
if (c <= 0 || w.length == 0)
return 0;
//初始化基本问题-------只有0 ~ 0(只有0)之间的物品可选
for (int capacity = 0; capacity <= c; capacity++) {
if (capacity >= w[0])
dp[0][capacity] = v[0];
else
dp[0][capacity] = 0;
}
//有基本问题推出一般问题
for (int i = 1; i < n; i++) {
for (int cap = 0; cap <= c; cap++) {
if(cap >= w[i])
dp[i][cap] = Math.max(dp[i-1][cap],v[i] + dp[i-1][cap - w[i]]);
else
dp[i][cap] = dp[i-1][cap];
}
}
return dp[n-1][c];
}
例5:leetcode 416 基于01背包的问题
详细见代码注释
class Solution {
/**
* 状态定义:F(i,C) i代表0~i的可选范围,C代表填充的背包容量(在这里背包的容量就是sum/2)
* 方程的含义是:在0~i的范围里能否填充C
* 状态转移方程F(i,C) --> F(i-1,C) || F(i,C-nums[i])
*/
public boolean canPartition(int[] nums) {
if (nums.length < 0)
return false;
int n = nums.length;
int C = 0;
for (int i = 0; i < n; i++)
C += nums[i];
if (C % 2 != 0)
return false;
C = C / 2;
boolean[] dp = new boolean[C + 1];
//找到基本问题的解
for (int i = 0; i <= C; i++) {
dp[i] = (nums[0] == i);//只用第1(从0到0 [0])个数字去试试能不能填满背包
}
//试试用[0...i]的范围,一步一步推导
for (int i = 1; i < n; i++) {
for (int j = C; j >= nums[i]; j--) {
dp[j] = dp[j] || dp[j - nums[i]];
}
}
return dp[C];
}
}
练习:兑换硬币
组合总和
一和零
单词差分
目标和
例6:最长上升子序列(LIS)
分析在代码中已体现
class Solution {
/**
* 状态的定义:LIS(i) 一定以i结尾的最长递增子序列
* 状态的转移:LIS(i) --> 1 + LIS(j | if(nums[j] < nums[i]) )
*/
private int n;
public int lengthOfLIS(int[] nums) {
this.n = nums.length;
if(nums.length == 0) return 0;
int[] dp = new int[n];
//找到基本问题的解
for (int i = 0; i < n; i++)
dp[i] = 1;
//根据状态转移方程推导更进一步问题的解
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if(nums[j] < nums[i] && dp[i] < 1 + dp[j] ){
dp[i] = 1 + dp[j];
}
}
}
//一定要注意返回的是dp数组中的最大值 不是直接return dp[n].
int res = 0;
for (int i = 0; i < n; i++) {
res = Math.max(res,dp[i]);
}
return res;
}
public static void main(String[] args) {
System.out.println(new Solution().lengthOfLIS(new int[]{1,3,6,7,9,4,10,5,6}));
}
}
如果进一步求出这个子序列是什么呢?
练习:leetcode 摆动序列
更多的问题:
最长公共子序列(LCS)
状态的定义: LCS(m , n) 代表 s1[0…m] 和 s2[0…n]的最长公共子序列的长度
状态转移方程:
分为两种情况:
如果s1[m] == s2[n]
LCS(m,n) = 1 + LCS ( m-1 , n-1)
如果s1[m] != s2[n]
LCS(m , n ) = max(LCS(m-1,n) , LCS( m , n-1 ) )
class Solution {
/**
* 状态定义: LCS(m , n) 代表 s1[0....m] 和 s2[0.....n]的最长公共子序列的长度
* 状态转移方程:
* 如果s1[m] == s2[n]
* LCS(m,n) = 1 + LCS ( m-1 , n-1)
* 如果s1[m] != s2[n]
* LCS(m , n ) = max(LCS(m-1,n) , LCS( m , n-1 ) )
*/
private String s1;
private String s2;
public int longestCommonSubsequence(String text1, String text2) {
this.s1 = text1;
this.s2 = text2;
return LCS(s1.length() - 1, s2.length() - 1);
}
private int LCS(int m, int n) {
//找到一般问题的解
int[][] dp = new int[n + 1][m + 1];//dp[i][j]的含义是:s1[0..i]与s2[0..j]的最长公共子序列
boolean flag = false;
for (int i = 0; i <= m; i++)
if (!flag && s2.charAt(0) == s1.charAt(i)) {
dp[0][i] = 1;
flag = true;
}else if(flag){
dp[0][i] = 1;
}
//根据状态转移方程推出更进一步的问题的解
for (int i = 1; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (s2.charAt(i) == s1.charAt(j))
if( i-1 >=0 && j-1>=0)
dp[i][j] = 1 + dp[i - 1][j - 1]; //这里与递归是一样的意义
else
dp[i][j] = 1;
else
dp[i][j] = Math.max((i-1>=0?dp[i - 1][j]:0), (j-1>=0?dp[i][j - 1]:0));//这里与递归是一样的意义
}
}
return dp[n][m];
}
public static void main(String[] args) {
System.out.println(new Solution().longestCommonSubsequence("bl", "yby"));
}
}
9.树
线段树/区间数
/**
* 该接口是为了为了使线段树更通用。
* 当要求一段区间的和 ,merge的功能是 求 a+b
* 当要求一段区间的积 ,merge的功能是 求 a*b
* 也就是对于不同的业务,不需要重新修改SegmentTree的代码
* @author zhanyuhao
* @version 创建时间:2020年3月3日 下午9:57:45
* 类说明
*/
public interface Merger<E> {
E merge(E a,E b);
}
/**
* 线段树(区间树)
*
* @author zhanyuhao
* @version 创建时间:2020年3月3日 下午7:55:54 类说明
*/
public class SegmentTree<E> {
private E[] data;
private E[] tree;
private Merger<E> merger;
public SegmentTree(E[] arr, Merger<E> merger) {
this.merger = merger;
data = (E[]) new Object[arr.length];
tree = (E[]) new Object[4 * arr.length];
for (int i = 0; i < arr.length; i++)
data[i] = arr[i];
buildTree(0, 0, data.length - 1);
}
private void buildTree(int treeIndex, int l, int r) {
if (l == r) {
tree[treeIndex] = data[l];
return;
}
int mid = l + (r - l) / 2;
int leftIndex = leftChild(treeIndex);
int rightIndex = rightChild(treeIndex);
buildTree(leftIndex, l, mid);
buildTree(rightIndex, mid + 1, r);
tree[treeIndex] = merger.merge(tree[leftIndex], tree[rightIndex]);
}
public E query(int queryL, int queryR) {
if (queryL < 0 || queryL >= data.length || queryR < 0 || queryR >= data.length) {
throw new IllegalArgumentException("not exist");
}
return queryHelp(0, 0, data.length - 1, queryL, queryR);
}
private E queryHelp(int treeIndex, int l, int r, int queryL, int queryR) {
if (queryL == l && queryR == r) {
return tree[treeIndex];
}
int mid = l + (r - l) / 2;
int leftIndex = leftChild(treeIndex);
int rightIndex = rightChild(treeIndex);
if (queryR <= mid) {// 结果在左子树
return queryHelp(leftIndex, l, mid, queryL, queryR);
} else if (queryL > mid) {
return queryHelp(rightIndex, mid + 1, r, queryL, queryR);
}
// 结果分布在两边
E leftResult = queryHelp(leftIndex, l, mid, queryL, mid);
E rightResult = queryHelp(rightIndex, mid + 1, r, mid + 1, queryR);
return merger.merge(leftResult, rightResult);
}
public void set(int index, E val) {
if (index < 0 || index >= data.length) {
new IllegalArgumentException("error");
}
set(0, 0, data.length-1, index, val);
}
private void set(int treeIndex, int l, int r, int index, E val) {
if (r == l) {
tree[treeIndex] = val;
return;
}
int mid = l + (r - l) / 2;
int leftIndex = leftChild(treeIndex);
int rightIndex = rightChild(treeIndex);
if(index <= mid) {
set(leftIndex,l,mid,index,val);
}else
set(rightIndex,mid+1,r,index,val);
//因为改变了叶子节点的内容,所以一定要更新其父节点的内容,这是一个联动的效果
tree[treeIndex] = merger.merge(tree[leftIndex], tree[rightIndex]);
}
private int leftChild(int index) {
return 2 * index + 1;
}
private int rightChild(int index) {
return 2 * index + 2;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("[");
for (int i = 0; i < tree.length; i++) {
if (tree[i] != null)
sb.append(tree[i] + " ");
else {
sb.append("null ");
}
}
sb.append("]");
return sb.toString();
}
}
下面是测试代码
public class Main {
public static void main(String[] args) {
Integer[] arr = { -2, 0, 3, -5, 2, -1, 1, 3 };
SegmentTree<Integer> seg = new SegmentTree<Integer>(arr,(a,b)->a+b);//这里使用的是lamda表达式
seg.set(1, 1);
seg.set(0, 1);
seg.set(3, 4);
System.out.println(seg.query(0, 4));//求出了数组下标为0 - 4 的和
}
}
10.dfs
待更新
11.bfs
待更新
12.必备的技巧
12.1 状态压缩
定义:简单来说就是某种状态需要由多个变量/元素确定,但是我们用一种方法将状态 压缩成一个或者更少的变量/元素就可以表示这个状态
如:二维数组用一个变量来表示。
数组大小为row*col
则:v = x * row + col //用一个v来存储这种状态
i = v / col //转换回去
j = v % col
12.2 取模的技巧(用于处理非常大的数据)
(a * b) % c = ((a % c) * (b % c) ) % c
(a + b) % c = ((a % c) + (b % c) ) % c
12.3 钟表类型的计算
比如一个数字只在0-12,当12 再加 1 就变成 0
那么 num = num % 12 ;
利用这个将减法变成加法 还是上面的例子,一个数减1 就等于这个数加 12
比如:0 - 1 = 12
转换成 0 + 12 = 12
也就是 (num-1) % 12 = (num+12)%12
这里只是举了一个特例 取余的那个数为 12 。具体遇到特殊情况,特殊对待
12.4 字符转数字互转换
将字符减去 '0' 的到的就是数字
Character.forDigit(int digit, int radix);//将数字转换成字符
12.5“四 / 八联通”
通常用于dfs的搜索
//四联通:
//设置一个二维数组为dirs[4][2] = [ [-1,0] , [0,1] , [1,0], [-1,0] ] //分别代表上,右,下,左
for (int d = 0; d < 4; d++) {
nextx = x + dirs[d][0];
nexty = y + dirs[d][1];
}
//八连通:
for (int i = -1; i < 2; i++) {//-1 0 1
for (int j = -1; j < 2; j++) { // -1 0 1
if(i==0 && j==0) //排除自身,剩下的就是8个方向
continue;
//.....
}
}
12.6斐波那契数列
前面提到了可以利用矩阵来快速计算斐波那契数列的第n项
在这里直接给出公式,感兴趣原理的,可以自己去查寻相关资料。
static int[][] m= {
{1,1},
{1,0}
};
static int N = m.length;
/**
* 通常快速求斐波那契数列需要结合BigInteger来使用,或者需要取余。这里没有考虑。
*/
public static void main(String[] args) {
for(int i=1;i<40;i++) {//从第3项开始的前n项和
int[][] res = quickExp(m,i);
int[][] init = {{1,1},{0,0}};
init = multiple(init, res);
System.out.println(init[0][0]);
}
}
private static int[][] quickExp(int[][] m, int n) {
int[][] res = new int[N][N];
for(int i=0;i<N;i++) {
for (int j = 0; j < N; j++) {
if(i == j) res[i][j] = 1;
else res[i][j] = 0;
}
}
while(n>0) {
if((n & 1) == 1)
res = multiple(res, m);
m = multiple(m, m);
n = n>>1;
}
return res;
}
private static int[][] multiple(int[][] m1, int[][] m2) {
int[][] res = new int[m1.length][m2[0].length];
for(int i=0;i<m1.length;i++) {
for(int j=0;j<m2[i].length;j++) {
for(int k=0;k<m2.length;k++) {
res[i][j] += m1[i][k]* m2[k][j];
}
}
}
return res;
}
更多更全的代码及内容:https://github.com/zhanyha/lanqiao
博客园:https://www.cnblogs.com/HoweZhan