算法设计与分析 动态规划 3.5凸多边形最优三角剖分问题(2022.03.21)

实现第五版,王晓东编著的第三章3.5凸多边形最优三角剖分问题的代码。课本62页。

#include<iostream>
#include<cmath>
int x[50],y[50];
using namespace std;
double w(int i,int k,int j);
void MinWeightTriangulation(int n,int **t,int **s);
void Traceback(int i,int j,int **s);
	
int main(){
	cout<<"请输入顶点个数:";
	int n;
	cin>>n;
	int **t=new int *[n];
	int **s=new int *[n];
	for(int i=0;i<n;i++){
		s[i]=new int [n];
		t[i]=new int [n];
	} 
	cout<<"请输入各点坐标:";
	for(int i=0;i<n;i++){
		cin>>x[i]>>y[i];
	} 
	n--;
	MinWeightTriangulation(n,t,s);
	Traceback(1,n,s);
	return 0;
}
double w(int i,int k,int j){
	return(sqrt((x[i]-x[k])*(x[i]-x[k])+(y[i]-y[k])*(y[i]-y[k]))
	      +sqrt((x[k]-x[j])*(x[k]-x[j])+(y[k]-y[j])*(y[k]-y[j]))
		  +sqrt((x[j]-x[i])*(x[j]-x[i])+(y[j]-y[i])*(y[j]-y[i])));
}

void MinWeightTriangulation(int n,int **t,int **s){
	for(int i=1;i<=n;i++) t[i][i]=0;
	for(int r=2;r<=n;r++){
		for(int i=1;i<=n-r+1;i++){
			int j=i+r-1;
			t[i][j]=t[i+1][j]+w(i-1,i,j);
			s[i][j]=i;
			for(int k=i+1;k<i+r-1;k++){
				int u=t[i][k]+t[k+1][j]+w(i-1,k,j);
				if(u<t[i][j]){
					t[i][j]=u;
					s[i][j]=k;
				}
			}
		}
	}
}
void Traceback(int i,int j,int **s){
	if(i==j) return;
	Traceback(i,s[i][j],s);
	Traceback(s[i][j]+1,j,s);
	cout<<"组成最优三角的顶点为:"<<i-1<<" "<<j<<" "<<s[i][j]<<endl; 
}
以下是Java实现的动态规划算法,用于凸多边形最优三角剖分: ```java public class Triangulation { public static double minWeightTriangulation(double[] vertices) { int n = vertices.length / 2; double[][] dp = new double[n][n]; for (int len = 2; len < n; len++) { for (int i = 0; i < n - len; i++) { int j = i + len; dp[i][j] = Double.MAX_VALUE; for (int k = i + 1; k < j; k++) { double weight = dp[i][k] + dp[k][j] + triangleArea(vertices, i, k, j); if (weight < dp[i][j]) { dp[i][j] = weight; } } } } return dp[0][n - 1]; } private static double triangleArea(double[] vertices, int i, int j, int k) { double x1 = vertices[2 * i]; double y1 = vertices[2 * i + 1]; double x2 = vertices[2 * j]; double y2 = vertices[2 * j + 1]; double x3 = vertices[2 * k]; double y3 = vertices[2 * k + 1]; return Math.abs((x1 * (y2 - y3) + x2 * (y3 - y1) + x3 * (y1 - y2)) / 2.0); } } ``` 这个算法中,`vertices`数组包含了多边形的所有顶点坐标,按照顺序存储,每个顶点有两个坐标值:x和y。`minWeightTriangulation`方法返回最优三角剖分的权重和,即所有三角形的面积之和。 算法的核心是一个二维数组`dp`,其中`dp[i][j]`表示从第i个顶点到第j个顶点的最优三角剖分的权重和。通过动态规划的方式,逐步计算出所有子问题最优解,最终得到全局最优解。 具体来说,算法的外层循环枚举子问题的长度,从2开始,一直到n-1。内层循环枚举子问题的起点i和终点j,计算出所有可能的三角剖分方式,并选择其中权重和最小的一个。这个过程的时间复杂度是O(n^3),可以通过一些优化来降低复杂度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值