分支定界 (branch and bound)求解TSP问题

 

 

1、方法简介
分支定界我理解就是一种有规律的枚举,所以它是可以求出精确的解。分支定界几个关键点就是设定界限函数,随着搜索的过程中逐渐更新界限,直至上界和下界重合;构建节点表,在每个分支的过程中需要将信息记录下来,按照某一个标准在节点表里储存,后续取点删点。

总体流程

2、方法应用
下边以b&b在求解tsp中的应用来说明,不同问题思路相近,大同小异。求解步骤如下:
(1)规约费用矩阵。即使费用矩阵中每一行每一列都包含0元素,此时规约系数就是该问题的一个下界。

(2)选择分支边。在(a,b)处分支可以有两个选择:一个是选择从a点到b点;另外就是选择从a点不到b点。如果选择了a到b那就就应该从费用矩阵里将第a行和第b列对应的费用值剔除,因为tsp问题里每一个点只能经过一次。然后还有防止路径成环修改其他的费用值,这个后边专门说。如果选择a点不到b点,表明a,b点都没有被选,只需要将费用矩阵里(a,b)对应的费用值改为正无穷即可,表明后续不再选择a点到b点。
(3)将每个分支的矩阵加入优先队列中,按照下界从小到大排序。每次分支后,从优先队列里选择下界最小的那张表进行后续分支。
(4)防止成环处理。防止成环,也就是说所有点还没有访问完就回到起点,即第一次分支选择点a到点b,第二次分支选择点b到点c,那么后续分支中如果选择点c到点a,那么就会形成a,b,c的环路。导致解是不可行的,因此需要做出修改。

费用矩阵规约
防止成环处理

 

3、算法实现

Point类
public class point  {
    public double c[][];//费用矩阵
    public int rowNumber[];// 费用矩阵的行号
    public int colNumber[];//费用矩阵对应的列号
    public int ad[];//路径
    public int k;// 阶数
    public double lowbound;// 下界
    public point(int count){
        c=new double[count][count];
        rowNumber=new int[count];
        colNumber=new int[count];
        ad=new int[Main.city];
        k=count;
    }
}

public class BBTSP  {
    public static int n=Main.city;
    /**
     * 计算某一行最小值和次小值
     * @param p 点
     * @param row p的第row行
     * @return 返回 第row行的最小值和次小值
     */
    double[] row_min(point p,int row){
        double result[]=new double[2];
        if(p.c[row][0]<p.c[row][1]){
            result[0]=p.c[row][0];
            result[1]=p.c[row][1];
        }
        else{
            result[0]=p.c[row][1];
            result[1]=p.c[row][0];
        }
        for(int i=2;i<p.k;i++){
            if(p.c[row][i]<result[0]){
                result[1]=result[0];
                result[0]=p.c[row][i];
            }
            else if(p.c[row][i]<result[1]){
                result[1]=p.c[row][i];
            }
        }
        return result;
    }

    double[] col_min(point p,int col){
        double result[]=new double[2];
        if(p.c[0][col]<p.c[1][col]){
            result[0]=p.c[0][col];
            result[1]=p.c[1][col];
        }
        else{
            result[0]=p.c[1][col];
            result[1]=p.c[0][col];
        }
        for(int i=2;i<p.k;i++){
            if(p.c[i][col]<result[0]){
                result[1]=result[0];
                result[0]=p.c[i][col];
            }
            else if(p.c[i][col]<result[1]){
                result[1]=p.c[i][col];
            }
        }
        return result;
    }

    /**
     * 规约矩阵
     * @param p 点
     * @return p对应的费用矩阵的规约值
     */
    double changeMaxtrix(point p){
        double sum=0,temp;
        for(int i=0;i<p.k;i++){
            temp=row_min(p,i)[0];
            for(int j=0;j<p.k;j++){
                p.c[i][j]-=temp;
            }
            sum+=temp;
        }
        for(int i=0;i<p.k;i++){
            temp=col_min(p,i)[0];
            for(int j=0;j<p.k;j++){
                p.c[j][i]-=temp;
            }
            sum+=temp;
        }
        return sum;
    }

    /**
     * 选择分支边
     * @param p 点
     * @return 返回分支边
     */
    double[] edge_sel(point p){
        int i,j;
        double temp,d=-1;
        double result[]=new double[3];
        double row_value[]=new double[p.k];
        double col_value[]=new double[p.k];
        for(i=0;i<p.k;i++){
            row_value[i]=row_min(p,i)[1];
        }
        for(i=0;i<p.k;i++){
            col_value[i]=col_min(p,i)[1];
        }
        for(i=0;i<p.k;i++){
            for(j=0;j<p.k;j++){
                if(p.c[i][j]==0) {
                    temp = row_value[i] + col_value[j];
                    if (temp > d) {
                        d = temp;
                        result[0] = d;
                        result[1] = i;
                        result[2] = j;
                    }
                }
            }
        }
        return result;
    }

    /**
     * 修改费用矩阵,删除对应行和列
     * @param p  点
     * @param vk 第vk行
     * @param vl 第vl列
     * @return  返回修改后的点
     */
    point del_rowcolnew(point p,int vk,int vl){
        point result=new point(p.k-1);
        result.k=p.k-1;
        int i=0;
        int j=0;
        int r,c;
        for(r=0;r<p.k;r++){
            j=0;
            if(r==vk){continue;}
            for(c=0;c<p.k;c++){
                if(c==vl){continue;}
                result.c[i][j]=p.c[r][c];
                j++;
            }
            i++;
        }
        i=0;
        for(r=0;r<p.k;r++){
            if(r==vk){continue;}
            result.rowNumber[i]=p.rowNumber[r];
            i++;
        }
        i=0;
        for(r=0;r<p.k;r++){
            if(r==vl){continue;}
            result.colNumber[i]=p.colNumber[r];
            i++;
        }
        for(r=0;r<n;r++){
            result.ad[r]=p.ad[r];
        }
        return result;
    }

    /**
     * 防止成环操作
     * @param p 
     * @param vk
     * @param vl
     * @return
     */
    point edge_bypnew(point p,int vk,int vl){
        int vk1=p.rowNumber[vk];
        int vl1=p.colNumber[vl];
        p.ad[vk1]=vl1;
        if(vk>=0&&vl>=0){
            p.c[vl][vk]=Double.MAX_VALUE;
        }
        int e=vk1;
        int s=vl1;
        int c=0;
        while(c<n){
            for(int i=0;i<n;i++){
                if(p.ad[i]==e){
                    e=i;
                    break;
                }
            }
            break;
        }
        c=0;
        while(c<n){
            for(int i=0;i<n;i++){
                if(i==s&&p.ad[i]>-1){
                    s=p.ad[i];
                    break;
                }
            }
            break;
        }
        int d;
        for(c=0;c<p.rowNumber.length;c++){
            for(d=0;d<p.colNumber.length;d++){
                if(p.rowNumber[c]==s&&p.colNumber[d]==e){
                    p.c[c][d]=Double.MAX_VALUE;
                }
            }
        }
        return p;
    }

    /**
     * 初始化
     * @param c
     * @param m
     * @return
     */
    point initalnew(double c[][],int m){
        int i,j;
        point node=new point(m);
        for(i=0;i<m;i++){
            for(j=0;j<m;j++){
                node.c[i][j]=c[i][j];
            }
        }
        for(i=0;i<m;i++){
            node.rowNumber[i]=i;
            node.colNumber[i]=i;
        }
        for(i=0;i<m;i++){
            node.ad[i]=-1;
        }
        node.k=m;
        return node;
    }
}

以28个点的tsp为例,测试结果如下:

运行结果

 这个速度着实有点慢,调用Gurobi求解tsp,28个点基本为0

秒,当然求解器内部是有优化的,大概是branch&cut?后边会出一篇branch&cut求解tsp的文章,以及VRP,网络流相关的内容。

 

  • 8
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
支限界法类又称为剪枝限界法或分支定界法,它类似于回溯法,也是一种在问题的解空间树T上搜索问题解的算法。它与回溯法有两点不同:①回溯法只通过约束条件剪去非可行解,而分支限界法不仅通过约束条件,而且通过目标函数的限界来减少无效搜索,也就是剪掉了某些不包含最优解的可行解。②在解空间树上的搜索方式也不相同。回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。分支限界法的搜索策略是:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展结点。为了有效地选择下一扩展结点,以加速搜索的进程, 在每一活结点处,计算一个函数值(限界),并根据这些已计算出的函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间树上有最优解的分支推进,以便尽快地找出一个最优解。 从活结点表中选择下一扩展结点的不同方式导致不同的分支限界法。最常见的有以下两种方式: ①队列式(FIFO)分支限界法:队列式分支限界法将活结点表组织成一个队列,并按队列的先进先出原则选取下一个结点为当前扩展结点。 ②优先队列式分支限界法:优先队列式分支限界法将活结点表按照某个估值函数C(x)的值组织成一个优先队列,并按优先队列中规定的结点优先级选取优先级最高的下一个结点成为当前扩展结点。 影响分支限界法搜索效率的有两个主要因素:一是优先队列Q的优先级由C(x)确定,它能否保证在尽可能早的情况下找到最优解,如果一开始找到的就是最优解,那么搜索的空间就能降低到最小。二是限界函数u(x),它越严格就越可能多地剪去分支,从而减少搜索空间。 在用分支限界法解决TSP问题时,有不少很好的限界函数和估值函数已经构造出来出了(限于篇幅,这里不做详细介绍), 使得分支限界法在大多数情况下的搜索效率大大高于回溯法。但是,在最坏情况下,该算法的时间复杂度仍然是O(n!),而且有可能所有的(n-1)!个结点都要存储在队列中。 近似算法是指不能肯定找到最优解的算法,但通常找到的也是比较好的解,或称近似最优解。[20]一般而言,近似算法的时间复杂度较低,通常都是多项式时间内的。由于近似算法的时间效率高,所以在实际应用中,主要是使用近似算法,这一类算法也一直是研究的主要对象。传统的近似算法以采用贪心策略和局部搜索为主,而几十年来,随着以遗传算法为代表的新型启发式搜索算法的逐步完善,在解决TSP问题上获得了巨大的成功。遗传算法、模拟退火算法、蚁群算法等已经成为公认的好算法。在本节中,将介绍传统的近似算法

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值