记得最初教小朋友加法时,我们经常举的例子就是:“1个苹果加上1个苹果等于2个苹果,所以1+1=2”。这似乎是数学最基础的道理,奈何孩子一时间还是无法理解。后来我让她用数手指头的方法理解1+2,2+3,但收效甚微。遇到新的题目她仍然不会借助手指头去数,最后还是把加法的问题和对应答案的数字硬背下来完事。
后来我发现,我们大人使用的“苹果相加”到最后“1+1=2”的过程,对孩子来说其实并不简单,这里面有些逻辑是跳跃的。
1+1=2吗?
比如问一个成年人,“1群羊加上1群羊等于几群羊?”,估计答案也不止一种。为什么呢?因为这里至少有2个问题没有明确。第一个问题是“1是什么”,另一个是“加法是什么”。
1个苹果的‘1’是什么呢?这个1是苹果的“个数”属性的数量。在加法中,我们实际上选择的是事物某种属性的量,而不是事物本身。再把选择的属性省略掉,事物本身抽象成数字。我们认为很自然的做法,孩子并不知道,他们不知道怎么就苹果变数字了。小时候还经常有这种题:“图中有()个小朋友,其中小明是第()个?”,这是让小朋友不要弄混“几个”和“第几个”的区别,小朋友经常弄混,究其原因还是因为事物的数量属性和顺序属性,这两个常用属性的量都是用数字表示的,成人希望孩子能够自己察觉并加以区分。
加法是什么,之前也不是个问题,后来随着数学危机与皮亚诺公里体系的诞生,1+1终于可以被证明出来了。这里也不是要介绍具体证明,只提一句,公里体系出现之前,通过数苹果就能天然的实践与证明1+1;公理体系有了之后,苹果也可以按照公理的方法去数去加了。这里我要说的是,数学的公理化运动以来,要意识到越到高年级越要依靠逻辑推理,不能只依靠自然直觉,不然孩子学习数学的道路会非常纠结。加法在孩子不同的学习阶段都会有新的定义,比如自然数相加、复数相加、矢量相加、矩阵相加等。
其实孩子小时候,就是一张白纸,对数学的不理解恰恰是我们没有把数学上的抽象和省略的地方给他们讲透。面对他们质疑的地方,也是简单的认为孩子胡思乱想,缺乏常识。啰嗦这些,希望与广大家长共同进步,洞察孩子学习中的困惑,帮助孩子在上小学时打好基础。