LBG矢量量化算法

LBG算法是一种矢量量化技术,用于数据压缩。它基于最佳划分和码书设计,通过迭代过程找到最佳码书,降低失真。该算法虽然高效,但存在搜索存储需求大、初始化影响收敛和码书适应性不足等问题。在实际应用中,如信号处理,LBG算法可以通过不断迭代和码书分裂来优化码本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LBG算法  

  1、矢量量化是一种数据压缩技术,是一种高效的有损数据压缩技术,它具有压缩比大、解码简单和失真较小等优点。其基本思想:将若干个标量数据组构成一个矢量,然后在矢量空间以整体量化,从而压缩了数据而不损失多少信息。矢量量化是信息论在信源编码理论方面的发展。

2、LBG算法中最佳量化器的设计关键是最佳划分和最佳码书的设计

一是给定码书条件下,寻找信源空间的最佳划分,使平均失真最小;

二是给定划分条件下,寻找最佳码书,使平均失真最小

3、矢量量化器的设计算法

     经典的码书设计算法是LBG算法,它是由Y.Linde,A.Buzo与R.M.Gray在1980年推出的,其思想是对于一个训练序列,先找出其中心,再用分裂法产生一个初始码书,最后把训练序列按码书中的元素分组,找出每组的中心,得到新的码书,转而把新码书作为初始码书再进行上述过程,知道满意为止。设计矢量量化器的主要任务是设计码书,在给定码书大小的情况下,由最佳划分和最佳码书两个必要条件得到矢量量化器的设计算法,LBG算法既可用于已知信源分布特性情况,又可用于未知信源分布特性情况。

 LBG算法:基于最佳矢量量化器设计的最佳划分和最佳码书这两个必要条件,是劳埃德算法在矢量空间的推广,其特点为物理概念清晰、算法理论严密及算法实现容易。但是,它有3个主要缺点:

(1)在每次迭代的最佳划分阶段,从码书中搜索训练矢量的最近码字需要大量的存储空间和繁琐的计算。

(2)初始码书的选择影响码书训练的收敛速度和最终码书的性能。

(3)码书的自适应能力不强。

步骤:

1、给定训练集T。固定ɛ(失真阈值)为一个很小的正数。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值