造数据,别慌!使用python faker创建大批量随机测试数据

前言

在数据库的使用过程中,有很多场合是要自行去构造大规模数据,以供测试、性能功能验证使用。我在前边一文:PostgreSQL - 大规模随机数据生成方法里介绍了PostgreSQL中生成大规模随机数据的方法。这种方法,生成数据比较快,但是数据大多是对业务场景没有太大意义的数据,或者说对业务不够友好。

本文再介绍通过一些第三方库,插入一些相对友好的随机数据 。那就是通过Python faker库来生成数据 。Faker是一个Python软件包,可为您生成伪造数据。无论您是需要引导数据库,创建美观的XML文档,填充持久性以进行压力测试还是匿名化来自生产服务的数据,Faker都是您的理想之选之一。不论您这边需要创建多少条数据,无非是一个for循环就解决问题了。

实作

基本安装

使用pip安装即可 pip install Faker

pip -V
pip 21.3.1 from /usr/local/lib/python3.6/site-packages/pip (python 3.6)

pip install Faker
Defaulting to user installation because normal site-packages is not writeable
Collecting Faker
  Downloading Faker-14.2.1-py3-none-any.whl (1.6 MB)
     |████████████████████████████████| 1.6 MB 1.1 MB/s
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.6/site-packages (from Faker) (4.1.1)
Requirement already satisfied: python-dateutil>=2.4 in /usr/local/lib/python3.6/site-packages (from Faker) (2.8.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/site-packages (from python-dateutil>=2.4->Faker) (1.16.0)
Installing collected packages: Faker
........................

github地址:https://github.com/joke2k/faker  可以直接从tags里找到各个版本的Faker下载。https://github.com/joke2k/faker/tags

API简介

我们可以用dir(fake)查看一下,它能fake近300种东西出来,并且faker还支持上几十种语言简直不能太强大。

简单示例:

>>> from faker import Faker
>>> fake = Faker('zh_CN')
>>> fake.country()
'福克兰群岛'
>>> fake.country()
'日本'
>>> fake.country()
'以色列'
>>> fake.country()
'保加利亚'
>>> fake.country()
'马拉维'

下边以PostgreSQL数据库为例,看看如何用Faker方便的生成数据,  设有表:

 create table customer(id bigserial primary key, name varchar(32) not null, job varchar(64),
      company varchar(128), phone_num varchar(24), email varchar(128), address varchar(128));

下面我们可以用Faker直接造些数据.

方式一:直接生成数据文件

# -*- coding:utf-8 -*-

from faker import Faker

class DataGenerator(object):
    def __init__(self):
        # 选择中文
        fake = Faker('zh_CN')
        # 生成数据改变循环体来控制数据量rang(?)
        self.data_total = [
            [fake.name(), fake.job(), fake.company(), fake.phone_number(), fake.company_email(), fake.address(),
             fake.date_time(tzinfo=None)] for x in range(100)] 
        print(self.data_total)
    # 写入txt
    def deal_txt(self):
        with open('data_total.txt', 'w', errors='ignore', encoding='utf-8') as output:
            output.write('name,job,company,phone_number,company_email,address\n')
            for row in self.data_total:
                rowtxt = '{},{},{},{},{},{}'.format(row[0], row[1], row[2], row[3], row[4], row[5], row[6])
                output.write(rowtxt)
                output.write('\n')
            output.close()
        print("Processing completed to txt")


if __name__ == '__main__':
    data = DataGenerator()
    data.deal_txt()

运行python3 datagen.py,我们打开数据文件:data_total.txt,  能看到100条数据:

name,job,company,phone_number,company_email,address
裴婷,产品专员,华泰通安科技有限公司,15540283808,weijin@guiyingyin.cn,江苏省潮州市和平深圳街f座 815057
陈成,激光/光电子技术,毕博诚网络有限公司,15983545054,xyan@xiuyingjing.cn,新疆维吾尔自治区莹市梁平毛街T座 733404
王兰英,水质检测员,创汇网络有限公司,13732772337,chao42@yansu.cn,浙江省哈尔滨县秀英深圳街g座 828060
陈秀梅,寻呼员/话务员,凌颖信息网络有限公司,15181833465,sgu@liyong.cn,宁夏回族自治区鹏县门头沟陈路W座 179856
...............

既然文件有了,使用\copy命令,可以秒入数据到表CUSTOMER中:

mydb=# \copy customer(name, job, company, phone_num, email, address) from '/iihero/source/faker/data_total.txt' with csv header;
COPY 100

看看效果:

样例数据生成

方式二:直接边生成数据边入库

我们把上边的代码稍改动一下, 加入连接pg并入库的操作

pip3 install psycopg2-binary

# -*- coding:utf-8 -*-

from faker import Faker

import psycopg2

class DataGenerator(object):
    def __init__(self):
        # 选择中文
        fake = Faker('zh_CN')
        # 生成数据改变循环体来控制数据量rang(?)
        self.data_total = [
            [fake.name(), fake.job(), fake.company(), fake.phone_number(), fake.company_email(), fake.address(),
             fake.date_time(tzinfo=None)] for x in range(100)] 
        print(self.data_total)
    # 写入txt
    def deal_txt(self):
        with open('data_total.txt', 'w', errors='ignore', encoding='utf-8') as output:
            output.write('name,job,company,phone_number,company_email,address\n')
            for row in self.data_total:
                rowtxt = '{},{},{},{},{},{}'.format(row[0], row[1], row[2], row[3], row[4], row[5])
                output.write(rowtxt)
                output.write('\n')
            output.close()
        print("Processing completed to txt")

    def deal_pg(self):
        # 打开数据库连接
        db = psycopg2.connect(database="mydb", user="mydb", password="test123", host="127.0.0.1", port="5555")
        print("Opened database successfully")
        # 使用cursor()方法获取操作游标
        cursor = db.cursor()
        # SQL 插入语句
        for val in self.data_total:
            sql = "insert into customer(name,job,company,phone_num,email,address) values ('%s','%s','%s','%s','%s','%s')" % (
                val[0], val[1], val[2], val[3], val[4], val[5])
            try:
                # 执行sql语句
                cursor.execute(sql)
                # 执行sql语句
                db.commit()
                print("insert ok")
            except(Exception, psycopg2.DatabaseError) as error:
                print(error)
                # 发生错误时回滚
                db.rollback()

        # 关闭数据库连接
        db.close()

    def deal_pg_direct(self):
        fake = Faker('zh_CN')
        # 打开数据库连接
        db = psycopg2.connect(database="mydb", user="mydb", password="test123", host="127.0.0.1", port="5555")
        print("Opened database successfully")
        # 使用cursor()方法获取操作游标
        cursor = db.cursor()
        # SQL 插入语句
        for x in range(1000):
            sql = "insert into customer(name,job,company,phone_num,email,address) values ('%s','%s','%s','%s','%s','%s')" % (
                fake.name(), fake.job(), fake.company(), fake.phone_number(), fake.company_email(), fake.address())
            try:
                # 执行sql语句
                cursor.execute(sql)
                # 执行sql语句
                db.commit()
                print("insert ok")
            except(Exception, psycopg2.DatabaseError) as error:
                print(error)
                # 发生错误时回滚
                db.rollback()
        # 关闭数据库连接
        db.close()

if __name__ == '__main__':
    data = DataGenerator()
    data.deal_pg()

我们先使用粗糙的deal_pg()方法,从内存的100条取出依次插入。你可以很顺利的看到100条插入到数据库当中。

优化一下,可以直接边fake数据边插入,那样内存开销极小。

当然,我们还可以进一步优化,就是每次插入绑定多条,那样性能还会好一些。本文的目的不在于此,在于快速生成数据的方法。

总结

Faker这个工具库,应该是一个通用的工具。对于某些DBMS缺乏必要的生成函数,我们可以用Faker快速生成较大规模的数据文件,然后一次性导入,也不失为一种方法。或者直接往库表里头灌入。

PostgreSQL又多了一种快速生成数据的方法,而且是对人友好可读的。

相关文档参考:

1、https://faker.readthedocs.io/en/master/
2、https://www.cnblogs.com/felixwang2/p/9246279.html (具体函数运用)

图片

相关文章导读:
1. PostgreSQL - 大规模随机数据生成方法

### 使用Python进行软件测试生成大量伪数据的最佳实践 #### Faker库简介 为了满足软件开发和测试过程中对于大量测试数据的需求,PythonFaker库提供了便捷、灵活且强大的解决方案。该库允许开发者快速生成多种类型的虚构数据,从而更好地模拟实际应用场景中的情况[^1]。 #### 安装Faker库 要开始使用Faker库,在命令行输入如下pip安装指令: ```bash pip install faker ``` #### 基本用法示例 下面是一个简单的例子展示如何通过Faker创建不同种类的数据集: ```python from faker import Faker fake = Faker() for _ in range(10): # 批量生产10条记录 print(f"Name: {fake.name()}, Address: {fake.address()}, Email: {fake.email()}") ``` 这段代码会打印出十个随机生成的名字、地址以及电子邮件组合。每调用一次`fake.<method>()`就会得到一个新的唯一值。 #### 高级特性应用 除了基础的信息外,还可以利用更复杂的属性来自定义所需的数据模式。比如指定国家地区参来获取特定区域内的个人信息;或是设定种子(seed)确保每次运行程序都能获得相同的结果以便于调试等操作。 ```python # 设置固定seed以保证可重复性 Faker.seed(4321) # 创建多语言版本实例 de_fake = Faker('de_DE') en_fake = Faker('en_US') print(de_fake.name()) # 输出德语名字 print(en_fake.name()) # 输出英语名字 ``` 此外,还支持自定义Provider扩展原有功能范围,能够针对具体业务逻辑定制化地制特殊格式的数据项。 #### 数据批量生成功能 当面对大规模数据需求时,可以通过循环结构配合列表解析式高效地一次性构大批量样本集合。 ```python def generate_large_dataset(size=1000): fake = Faker() dataset = [ { "name": fake.name(), "address": fake.address().replace("\n", ", "), "email": fake.safe_email(), "phone_number": fake.phone_number(), "job": fake.job(), "company": fake.company(), "ssn": fake.ssn(), } for _ in range(size) ] return dataset large_set = generate_large_dataset(5000) # 生产五千条记录 ``` 上述函可以根据给定的量大小动态调整最终产出的数据规模,并将其封装成字典形式返回供后续处理分析所用。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iihero

谢谢打赏,不断前行

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值