【整理】旅行商问题(traveling salesman problem,TSP)

旅行商

一个旅行商由某市出发,经过所有给定的n个城市后,再

回到出发的城市。除了出发的城市外,其它城市只经过一

回。这样的回路可能有多个,求其中路径成本最小的回路。

蛮力【穷举】

【例4-4】旅行商问题——排列树

 计算模型

(1) 存储 图G(V, E)。以邻接矩阵的方式存储,设计如下:

 

 (2)计算 设起始点下标为0

  生成排列树。设解空间为a,则其解空间的计算过程可描述为:

  求回路代价。设sumi 是并入第i个结点的代价 :

 sumi并入第i个结点的代价= sum_i-1代入第i-1个结点的代价 + 边(i-1到i)

分支限界法:

穷举法代码:

#include<iostream>
using namespace std;

//蛮力(穷举)
//邻接矩阵
int n = 4;
int edge[4][4] = { 0,8,5,4,
				8,0,7,3,
				5,7,0,1,
				4,3,1,0 };
int vertex[4] = { 'a','b','c','d' };
int a[] = { 0,1,2,3 };//解空间
int minvalue = 10000;//当前最小值
int path[4] = { 0 };//当前解的路径
int minpath[4] = { 0 };//最优解的路径

void showpath(int a[])
{
	cout << "showpath:";
	for (int i = 0; i < n; i++)
	{
		cout << a[i] << "\t";
	}
	//回到终点
	cout <<a[0]<< endl;
}
void copypath(int minpath[])
{
	for (int i = 0; i < n; ++i)
	{
		minpath[i] = a[i];
	}
}
int cost()//求当前路径的权值
{
	int sum = edge[0][a[0]];
	int i;
	for (i = 1; i < n; ++i)
	{
		sum += edge[a[i - 1]][a[i]];
	}
	sum += edge[a[i - 1]][0];//回到0
	return sum;
}
//递归
void EnumTSP(int i)
{
	int k, temp;
	if (i == n - 1)//最后一个结点,递归出口
	{
		if (cost() < minvalue)//当前解的权值 < 当前最小
		{
			minvalue = cost();//更新最小权值
			copypath(minpath);//赋值到最优解路径
		}
	}
	else
	{
		for (int k = i; k < n; k++)
		{
			//全排列
			temp = a[i]; a[i] = a[k]; a[k] = temp;
			//下一层递归
			EnumTSP(i + 1);
			//恢复现场
			temp = a[i]; a[i] = a[k]; a[k] = temp;
		}
	}
}

int	main()
{
	EnumTSP(0);//从第0层开始
	showpath(minpath);
	cout <<"minvalue:" << minvalue << endl;
	return 0;
}

回溯法代码:

#include<iostream>
#include<queue>
using namespace std;

//分支限界法
typedef struct node {
    bool vis[20];
    int st;//起点
    int ed;//终点
    int k;//走过的点数
    int sumv;//走过的路径距离
    int lb;//目标函数的值 下界
    int path[20];//当前路径
    //运算符重载
    bool operator<(const node& p)
    {
        return lb > p.lb;
    }
}node;

const int INF = 10000000; //表示无穷大
int low, up, n, used[20];
int cost[20][20] = { {4,2,6,9},{4,7,8,10}, {2,7,5,3}, {6,8,5,4}, {9,10,3,4} };
char city[20] = {'A','B','C','D','E'};
priority_queue<node>q;//优先级队列
node answer;//答案 最优解

//求上界
// 当前结点下标,第几层,当前路径长度
int get_up_digui(int v, int j, int len)
{
    int minE = INF;
    int pos;
    if (j == n)//结束
    {
        return len + cost[v][1];
    }
    //v的邻接边中最短
    for (int i = 1; i <= n; i++)//从1开始
    {
        //未访问
        if (used[i] == 0 && minE > cost[v][i])
        {
            minE = cost[v][i];
            pos = i;
        }
    }
    //设为访问
    used[pos] = 1;
    return get_up_digui(pos, j + 1, len + minE);
}
//求上界
void get_up()//求当前上界
{
    used[1] = 1;//从1开始访问
    up = get_up_digui(1, 1, 0);
}
//下界
void get_low()//求当前下界
{
    low = 0;
    //最短两条边
    for (int i = 1; i <= n; i++)
    {
        int temp[20];
        for (int j = 1; j <= n; j++)
        {
            temp[j] = cost[i][j];
        }
        sort(temp + 1, temp + 1 + n);//从1开始
        low += temp[1]+temp[2];
    }
    low = low / 2;
    //其他顶点最短两条边

}

//结点所在分支的下界
int get_lb(node p)
{
    int res = p.sumv * 2;//已遍历的城市的距离
    int min1 = INF, min2 = INF, pos;
    //从起点 到 最近未遍历的城市的距离
    for (int i = 1; i <= n; i++)
    {
        if (p.vis[i] == 0 && min1 > cost[p.st][i])
        {
            min1 = cost[p.st][i];
            pos = i;
        }
    }
    res += min1;
    //从离开结点 到最近未便利城市的距离
    for (int i = 1; i <= n; i++)
    {
        if (p.vis[i] == 0 && min2 > cost[i][p.ed])
        {
            min2 = cost[i][p.ed];
            pos = i;
        }
    }
    res += min2;
    //进入并离开 每个未遍历城市的最小成本
    for (int i = 1; i <= n; i++)
    {
        if (p.vis[i] == 0)
        {
            int temp[n];
            min1 = min2 = INF;
            for (int j = 1; j <= n; j++)
            {
                temp[j] = cost[i][j];
            }
            sort(temp + 1, temp + 1 + n);
            res += temp[1] + temp[2];
        }
    }
    //向上取整
    res = res % 2 == 0 ? (res / 2 ):( res / 2 + 1);
    return res;
}

//求解
int solve()
{
    int res = INF;//
    get_up();//求当前上界
    get_low();//当前下界
    node s;//
    s.st = 1;//起始节点
    s.ed = 1;//终点
    s.k = 1;//走过点数
    s.sumv = 0;//
    s.lb = low;//当前下界
    s.path[0] = 0;//起点
    //
    for (int i = 0; i < n; i++)//初始化 未访问,没有路径
    {
        s.vis[i] = 0;
        s.path[i] = 0;
    }
    s.vis[0] = 1;//访问第一个结点
    q.push(s);//当前结点入队
    node next, temp;
    while (!q.empty())
    {
        temp = q.top();//队首元素
        q.pop();//出队
        //结束条件
        //只剩最后一个点
        if (temp.k == n - 1)
        {
            int pos = 0;
            for (int i = 1; i <= n; i++)//从0开始
            {
                if (temp.vis[i] == 0)//如果路径上第i点没有被访问
                {
                    pos = i;
                    break;
                }
            }
            //结束遍历
            if (pos == 0)//都被访问
            {
                break;//结束while循环
            }
            //还有pos没有访问到,那么设最后一个结点是POS
            //结果 当前路径长度+当前路径终点到POS+POS到当前路径起点
            int ans = temp.sumv+cost[pos][temp.st]+cost[temp.ed][pos];
            //最后一个结点是POS 
            temp.path[n] = pos;//从结点1开始计算
            //当前路径的上界是
            temp.lb = ans;
            //此时队首元素,也是当前最优元素
            node judge = q.top();
            //如果当前路径比所有分支的上界都小,找到最优解
            if (ans <= judge.lb);
            {
                res = min(ans, res);
                answer = temp;//返回答案
                break;
            }
            else if(up>=ans)//当前答案<=上界,还是有可能从其他路径更新上界
            {
                up = ans;
                answer = temp;

            }
            res = min(res, ans);//更新此时的最小值
            continue;

        }
        //
        for (int i = 1; i <= n; i++)
        {
            if (temp.vis[i] == 0)//当前路径还未访问该点
            {
                next.st = temp.st;//一样的起点
                next.ed = i;//结点是i
                next.k = temp.k + 1;//点数+1
                next.sumv = temp.sumv + cost[temp.ed][i];//更新
                for (int j = 1; j <= n; j++)
                {
                    next.vis[j] = temp.vis[j];
                    next.path[j] = temp.path[j];
                }
                next.vis[i] = 1;
                next.path[next.k] = 1;//路径
                next.lb = get_lb(next);//下界 
                if (next.lb <= up)//如果
                {
                    q.push(next);
                }//反之,剪枝
            }
        }
    }
    return res;
}

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
离已知,旅行商问题Traveling Salesman ProblemTSP)是在图论中的经典问题。它假设有若干个城市,并且每两个城市之间的距离都已知。问题的目标是找到一条路径,使得旅行商能够依次访问每个城市,并且最终回到起始城市,同时总路径长度最短。 TSP是一个NP-hard问题,意味着在一般情况下很难找到一个高效的解决算法。目前,对于TSP的求解方法主要有穷举法、贪心算法、动态规划、遗传算法等。 穷举法是一种暴力的解法,它尝试列举出所有可能的路径,并计算每条路径的总长度,最后选择其中最短的路径。这种方法适用于城市数量较少的情况,但随着城市数量的增加,计算量呈指数级增长。 贪心算法是一种局部最优策略,它从一个起始城市开始,每次选择距离最近的下一个城市作为下一个访问目标,直到遍历完所有城市。贪心算法的计算速度较快,但可能得到的结果并不一定是最优解。 动态规划是一种针对TSP的优化算法,通过利用子问题的最优解来构造整体解。它将问题分解为多个子问题,并通过递归计算子问题的最优解,最终得到整体的最优解。动态规划的时间复杂度为O(n^2*2^n)。 遗传算法是一种启发式的优化算法,它模拟自然界中的遗传进化过程。通过对路径进行交叉、变异等操作,逐步优化路径长度,最终找到近似最优解。遗传算法能够处理大规模的TSP问题,但结果通常只是近似最优解。 总之,TSP是一个经典的图论问题,已经有人提出了多种求解方法。根据问题的规模和对结果要求的不同,可以选择适用的解决算法。然而,由于TSP的复杂性,要找到真正的最优解仍然是一个挑战。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值