18、从孤立单词到无约束文档:离线手写识别的突破

从孤立单词到无约束文档:离线手写识别的突破

1. 引言

手写识别技术的起源可以追溯到上世纪八十年代,当时就有人开始尝试自动识别手写单词。不过,直到九十年代中期,这一领域才真正开始蓬勃发展,主要得益于两个因素:一是廉价图像采集和存储技术的普及,使得人们能够在大量手写材料数据库上进行实验;二是机器学习领域对手写识别任务(特别是手写数字自动转录)的广泛应用。

早期手写识别研究主要集中在两个应用领域:手写邮政地址中的城镇名称识别和银行支票金额的字母转录。这两个任务在1995 - 2005年期间主导了手写识别研究,原因在于相关的词汇表(即手写数据可能的转录列表)规模较小(10 - 1000个单词),能够实现令人满意的性能。同时,还可以将单词识别与相关手写数字识别(邮政地址的邮政编码和银行支票的数字金额)相结合,使性能迅速达到实际应用的要求。在这一时期,一些重要的手写识别产品销售公司应运而生,如Vision Objects、A2iA、Abbyy等。

后来,由于此前在单词识别方面已经做了大量工作,很难在上述两个领域或其他涉及孤立单词识别的应用领域取得显著进展。因此,相关研究开始从孤立单词识别转向文本转录。这一转变在手写识别领域得到了广泛认可,尤其是在会议场景中,参与者需要记录笔记和会议纪要,文本识别显得尤为重要。然而,当时的技术面临两个挑战:一是需要采用比以往大两个数量级(从100到50000个单词)的词汇表;二是需要对单词序列进行建模,而不仅仅是孤立单词。

2. 离线单词识别

离线手写识别是指对以静态图像形式存在的手写数据进行自动转录。与在线手写识别不同,离线识别缺少笔的轨迹信息,且墨水笔画的时间顺序未知。其识别过程主要包括以下几个步骤:

内容概要:本文围绕【卡尔曼滤波】具有梯度流的一类系统的扩散映射卡尔曼滤波器研究(Matlab代码实现)“具有梯度流的一类系统的扩散映射卡尔曼滤波器研究”展开,重点介绍了一种结合扩散映射与卡尔曼滤波的新型滤波方法,适用于存在模型不确定性或混沌特征的动态系统状态估计。该方法利用梯度流信息提升滤波性能,在可预测性较高的阶段对混沌系统具备一定的预测能力,并通过Matlab代码实现验证其有效性。文档还附带多个相关研究主题,涵盖故障诊断、路径规划、信号处理、无人机控制、电力系统优化等多个领域,展示了卡尔曼滤波及其他先进算法在工程实践中的广泛应用。; 适合人群:具备一定数学基础和编程能力,从事控制理论、信号处理、自动化、航空航天、机器人或相关工程领域的研究生、科研人员及工程师。; 使用场景及目标:①研究复杂动态系统(如混沌系统)的状态估计与预测问题;②提升在模型不准确或噪声干扰严重情况下的滤波精度;③结合Matlab仿真平台开展算法开发与验证,推动理论成果向实际应用转化; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深入理解扩散映射与卡尔曼滤波的融合机制,同时可参考文中列举的多种应用场景拓展思路,注重算法原理与工程实现的结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值