[51Nod - 1594]Gcd and Phi(莫比乌斯反演)

题面

∑ i = 1 n ∑ j = 1 n φ ( g c d ( φ ( i ) , φ ( j ) ) ) \sum_{i=1}^n\sum_{j=1}^n\varphi\left(gcd(\varphi(i),\varphi(j))\right) i=1nj=1nφ(gcd(φ(i),φ(j)))
n ≤ 2 e 6 n\le 2e6 n2e6

题解

先初步推一推柿子。
A n s = ∑ d = 1 n φ ( d ) ∑ i = 1 n ∑ j = 1 n [ g c d ( φ ( i ) , φ ( j ) ) = = d ] Ans=\sum_{d=1}^n\varphi(d)\sum_{i=1}^n\sum_{j=1}^n[gcd(\varphi(i),\varphi(j))==d] Ans=d=1nφ(d)i=1nj=1n[gcd(φ(i),φ(j))==d] s ( k ) s(k) s(k)表示 n n n以内 φ ( i ) = k \varphi(i)=k φ(i)=k的正整数 i i i的个数。则
A n s = ∑ d = 1 n φ ( d ) ∑ i = 1 n ∑ j = 1 n s ( i ) ⋅ s ( j ) ⋅ [ g c d ( i , j ) = = d ] = ∑ d = 1 n φ ( d ) ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ s ( i d ) ⋅ s ( j d ) ⋅ [ g c d ( i , j ) = = 1 ] Ans=\sum_{d=1}^n\varphi(d)\sum_{i=1}^n\sum_{j=1}^ns(i)\cdot s(j)\cdot[gcd(i,j)==d]\\=\sum_{d=1}^n\varphi(d)\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}s(id)\cdot s(jd)\cdot[gcd(i,j)==1] Ans=d=1nφ(d)i=1nj=1ns(i)s(j)[gcd(i,j)==d]=d=1nφ(d)i=1dnj=1dns(id)s(jd)[gcd(i,j)==1] g ( d ) = ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ s ( i d ) ⋅ s ( j d ) ⋅ [ g c d ( i , j ) = = 1 ] g(d)=\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}s(id)\cdot s(jd)\cdot[gcd(i,j)==1] g(d)=i=1dnj=1dns(id)s(jd)[gcd(i,j)==1],发现不好求。

再令 f ( d ) = ∑ i = 1 ⌊ n d ⌋ ∑ j = 1 ⌊ n d ⌋ s ( i d ) ⋅ s ( j d ) f(d)=\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\frac nd\rfloor}s(id)\cdot s(jd) f(d)=i=1dnj=1dns(id)s(jd),有:
f ( d ) = ∑ k = 1 ⌊ n d ⌋ g ( k d ) f(d)=\sum_{k=1}^{\lfloor\frac nd\rfloor}g(kd) f(d)=k=1dng(kd)反演后得:
g ( d ) = ∑ k = 1 ⌊ n d ⌋ μ ( k ) f ( k d ) ∴ A n s = ∑ i = 1 n φ ( n ) g ( ⌊ n d ⌋ ) = ∑ d = 1 n φ ( d ) ∑ i = 1 μ ( i ) f ( i d ) g(d)=\sum_{k=1}^{\lfloor\frac nd\rfloor}\mu(k)f(kd)\\ \therefore Ans=\sum_{i=1}^n\varphi(n)g(\lfloor\frac nd\rfloor)=\sum_{d=1}^n\varphi(d)\sum_{i=1}\mu(i)f(id) g(d)=k=1dnμ(k)f(kd)Ans=i=1nφ(n)g(dn)=d=1nφ(d)i=1μ(i)f(id)

那么预处理出来 f f f,就能求 g g g了。直接按照式子 O ( n log ⁡ n ) O(n\log n) O(nlogn)求。就完事了。

O ( T n log ⁡ n ) O(Tn\log n) O(Tnlogn),有点慢还是能过。还有个小优化可以把 φ \varphi φ μ \mu μ枚举顺序交换一下,那么对于 μ = 0 \mu=0 μ=0的时候就不用算(也优化不了多少)。

CODE

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 2000005;
int n, cnt, p[N], phi[N], s[N], mu[N];
bool vis[N];
LL f[N];

void init(int N) {
	phi[1] = mu[1] = 1;
	for(int i = 2; i <= N; ++i) {
		if(!vis[i]) p[++cnt] = i, phi[i] = i-1, mu[i] = -1;
		for(int j = 1, k; j <= cnt && i * p[j] <= N; ++j) {
			vis[k = i * p[j]] = 1;
			if(i % p[j] == 0) {
				mu[k] = 0;
				phi[k] = phi[i] * p[j];
				break;
			}
			mu[k] = -mu[i];
			phi[k] = phi[i] * (p[j]-1);
		}
	}
}

int main () {
	init(2000000); int T, n;
	scanf("%d", &T);
	while(T--) {
		scanf("%d", &n);
		for(int i = 1; i <= n; ++i) ++s[phi[i]];
		for(int i = 1; i <= n; ++i) {
			f[i] = 0;
			for(int j = i; j <= n; j += i)
				f[i] += s[j];
			f[i] = f[i] * f[i];
		}
		LL ans = 0;
		for(int i = 1; i <= n; ++i) if(mu[i]) {
			LL sum = 0;
			for(int d = 1; i*d <= n; ++d)
				sum += phi[d] * f[i*d];
			ans += sum * mu[i];
		}
		printf("%lld\n", ans);
		for(int i = 1; i <= n; ++i) --s[phi[i]];
	}
}

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值