SALib | 灵敏度分析Python工具箱

Sensitivity Analysis Library

SALib是常用灵敏度分析方法的Python实现,包括 Sobol、Morris 和 FAST 方法。在系统建模中很有用,可以计算模型输入或外生因素对感兴趣的输出的影响。

Supported Methods

SALib支持以下10种方法:

  • Sobol Sensitivity Analysis

  • Method of Morris, including groups and optimal trajectories

  • Fourier Amplitude Sensitivity Test (FAST)

  • Random Balance Designs - Fourier Amplitude Sensitivity Test (RBD-FAST)

  • Delta Moment-Independent Measure

  • Derivative-based Global Sensitivity Measure (DGSM)

  • Fractional Factorial Sensitivity Analysis

  • High Dimensional Model Representation

  • PAWN

  • Regional Sensitivity Analysis

Installation

pip install SALib  

or

conda install SALib

Requirements

NumPy

SciPy

matplotlib

pandas

Python 3 (from SALib v1.2 onwards SALib does not officially support Python 2)

How to cite SALib

If you would like to use our software, please cite it using the following:

Iwanaga, T., Usher, W., & Herman, J. (2022). Toward SALib 2.0: Advancing the accessibility and interpretability of global sensitivity analyses. Socio-Environmental Systems Modelling, 4, 18155. doi:10.18174/sesmo.18155
Herman, J. and Usher, W. (2017) SALib: An open-source Python library for sensitivity analysis. Journal of Open Source Software, 2(9). doi:10.21105/joss.00097If you would like to use our software, please cite it using the following:

If you use BibTeX, cite using the following entries:

@article{Iwanaga2022,
  title = {Toward {SALib} 2.0: {Advancing} the accessibility and interpretability of global sensitivity analyses},
  volume = {4},
  url = {https://sesmo.org/article/view/18155},
  doi = {10.18174/sesmo.18155},
  journal = {Socio-Environmental Systems Modelling},
  author = {Iwanaga, Takuya and Usher, William and Herman, Jonathan},
  month = may,
  year = {2022},
  pages = {18155},
}

@article{Herman2017,
  doi = {10.21105/joss.00097},
  url = {https://doi.org/10.21105/joss.00097},
  year  = {2017},
  month = {jan},
  publisher = {The Open Journal},
  volume = {2},
  number = {9},
  author = {Jon Herman and Will Usher},
  title = {{SALib}: An open-source Python library for Sensitivity Analysis},
  journal = {The Journal of Open Source Software}
}If you use BibTeX, cite using the following entries:

Reference

### Python中实现灵敏度分析的方法和库 #### 使用SALib库进行灵敏度分析Python中,`SALib` 是一个广泛使用的灵敏度分析工具箱,支持多种灵敏度分析方法,如 Sobol 方法、Morris 方法、分数阶乘设计以及 FAST 方法[^1]。 安装 `SALib` 库可以通过 pip 完成: ```bash pip install SALib ``` 对于使用 `SALib` 进行灵敏度分析,通常需要定义输入参数范围及其分布,并编写模拟函数来计算输出。以下是基于 Sobol 方法的一个简单例子: ```python from SALib.sample import saltelli from SALib.analyze import sobol import numpy as np def model(x): """A simple example function.""" return np.sum(np.sin(x), axis=1) problem = { 'num_vars': 3, 'names': ['x1', 'x2', 'x3'], 'bounds': [[0, 1], [0, 1], [0, 1]] } param_values = saltelli.sample(problem, 1024) Y = model(param_values) Si = sobol.analyze(problem, Y, print_to_console=True) ``` 这段代码展示了如何利用 `saltelli.sample()` 函数生成样本点集,再通过调用目标模型得到对应的输出值集合 `Y` ,最后借助 `sobol.analyze()` 来解析并打印出各个输入变量的重要性指标[^2]。 #### 投资行业中的应用实例 具体到投资领域,可以构建一个简单的财务预测模型,其中涉及多个影响最终回报率的因素(比如初始投资额、年增长率等)。通过对这些因素执行灵敏度分析,可以帮助投资者理解哪些方面最可能影响预期收益,从而做出更明智的选择[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值