- 博客(54)
- 资源 (18)
- 问答 (1)
- 收藏
- 关注
原创 数据分享 | SOCR地震数据
地震是一种自然灾害,会造成重大损失和人员伤亡。准确预测地震对于开发预警系统、灾害规划、风险评估和科学研究至关重要。该数据为美国加利福尼亚州的历史数据,可用于预测该地区发生地震的震级和概率。The Statistics Online Computational Resource (SOCR) 地震数据集包含有关美国加利福尼亚州发生的 3.0 级或更大地震的信息。
2024-11-01 14:29:26
1090
原创 UQLab | 不确定性量化MATLAB工具箱推荐
UQLab是基于MATLAB开发的不确定性量化工具包,代码开源。提供完整的说明书,包括不确定性量化相关理论及实践操作案例,非常适合初学者入门不确定性量化分析领域。UQLab 的开发始于 2013 年,由苏黎世联邦理工学院风险、安全和不确定性量化系Sudret教授团队开发的通用不确定性量化框架。它由开源科学模块组成,这些模块可以顺利连接起来,通过蒙特卡罗模拟、灵敏度分析、可靠性分析(计算罕见事件概率)、替代模型(多项式混沌展开、克里金法等)、贝叶斯反演/校准等进行不确定性量化。
2024-10-31 22:15:09
1472
原创 Python案例 | 测试网络的下载速度上传速度和 ping 延迟
使用了 speedtest 库来测试网络的下载速度上传速度和 ping 延迟。注意,这里需要先卸载speedtest,再安装speedtest-cli。
2024-10-15 22:00:59
574
原创 Python案例 | 获取笔记本电脑电池的状态信息
使用psutil库来获取笔记本电脑电池的状态信息,并输出电池的百分比、电源插入状态以及电池剩余时间。首先安装psutil库。
2024-10-15 21:55:29
285
原创 Python案例 | 使用K-means 聚类算法提取图像中的颜色
假如我们需要提取下图中的颜色,可以通过使用 K-means 聚类算法对图像进行颜色聚类分析,并生成一个基于聚类中心(即最具代表性的颜色)的RGB值和调色板。
2024-10-14 23:11:57
1097
原创 Python案例 |地图绘制及分级着色
分级着色地图常用于可视化地理数据,比如人口密度、经济数据、气候变化等。其原理是使用颜色或阴影的渐变来表示不同区域(如国家、省份、城市等)中的数据差异。例如,地图上的每个区域根据其代表的数值被着色,通常数值越大,颜色越深。
2024-10-13 19:25:52
944
原创 C#基础 | 调用Python程序时出现System.TypeInitializationException:““Delegates“的类型初始值设定项引发异常。”的问题解决办法
System.TypeInitializationException:""Delegates"的类型初始值设定项引发异常。**原因:**由于Anconda没有设置环境变量,导致无法识别到路径下的python文件。出现问题是找不到“python310.dll”,但是我明明设置了。完成后即可正常使用C#调用python代码。
2024-09-30 17:58:29
694
1
原创 C#案例 | 基于C#语言在Excel中进行二次开发(一):简单系统搭建:打印输出“Hello Excel & C#”
点击“运行”,在打开的Excel文件中,在选项卡下点击“Hello Excel”即可运行弹出窗口“Hello Excel & C#”,并在A1表格中输入内容:“欢迎使用C#对Excel进行二次开发”,即:我们设置想要输出的内容。点击创建“空白工作簿”,在“空白工作簿”中可以看到我们前面创建的“TabToolkits”选项卡,在选项卡下点击“Hello Excel”即可运行弹出窗口“Hello Excel & C#”,即:我们设置想要输出的内容。鼠标点击“group1”,进入“group1”的属性设置。
2024-09-29 17:06:29
1986
原创 MATLAB案例 | Copula的密度函数和分布函数图
本文介绍各种类型(Gaussian、t、Gumbel、Clayton、Frank)Copula的密度函数和分布函数图的绘制。
2024-09-26 10:29:59
875
原创 MATLAB案例 | 沪深股市收益率的二元Copula模型
作出的二元频率直方图如图4所示,可以看出,频率直方图具有基本对称的尾部,也就是说(U,V)的联合密度函数(即Copula密度函数)具有对称的尾部,因此可以选取二元正态Copula函数或二元t-Copula函数来描述原始数据的相关结构。以上命令作出的频数直方图如图3所示,在频数直方图的基础上还可以绘制频率直方图,并且频率直方图可以作为(U,V)的联合密度函数(即Copula密度函数)的估计。在确定X的边缘分布U= F(x)和Y的边缘分布V=G(x)之后,就可以根据(U_i,V_i,)(i=1,2…
2024-09-25 10:36:10
1376
原创 OceanMesh2D | 基于精确距离的沿海海洋/浅水流动模型二维自动网格生成MATLAB工具箱推荐
OceanMesh2D是一组用于组装和后处理有限元数值模拟中使用的二维(2D)三角形网格的MATLAB脚本。它的设计考虑到了沿海海洋模型,尽管它可以网格化由多边形包围的任何2D地区。它可以用于根据用户定义的edgelength函数参数来构建不同大小的网格(最多1000-2000万个顶点左右),这些参数控制分辨率在空间中的分布方式。用该软件创建的网格几乎是可复制的,因为它们是可参数化的,并且可以在个人计算机上以几分钟到几小时的量级快速组装。
2024-09-20 12:45:33
1122
原创 Python基础 | 在虚拟环境中安装并在指定文件夹中打开Jupyter notebook
Jupyter Notebook 是一个基于 Web 的交互式计算环境,主要功能是将代码、文本、数学方程式、可视化和其他相关元素组合在一起,用于数据分析、机器学习、科学计算和数据可视化等方面。支持多种编程语言,如 Python、R、Julia 等。Jupyter Notebook的交互式界面使用户能够以增量和可视化的方式构建和执行代码,同时支持 Markdown 格式的文本和 LaTeX 数学符号。
2024-09-18 13:46:34
953
2
原创 UQpy | 不确定性量化Python工具箱推荐
RunModel 既可以用作转换实用程序(将 UQpy 中的信息转换为软件输入),也可以用作计算分析的驱动程序(它将执行代码,并在必要时重复执行,就像在蒙特卡洛分析中一样)。该代码被组织为一组以不确定性量化(UQ)的核心功能为中心的模块,如下所示。StochasticProcess: StochasticProcess 模块包含一组用于模拟(合成生成)随机过程和随机场的类。Inference (Coming soon): 推理模块包含一组用于模型选择(贝叶斯和信息理论)和贝叶斯参数估计的类。
2024-09-14 22:37:13
1496
原创 SMT | Kriging代理模型原理及应用
代理模型工具箱 (surrogate modeling toolbox, SMT) 是一个基于Python开发的第三方包,其中包含代理模型方法、采样技术和基准测试函数。SMT | 代理模型Python工具包推荐Kriging (KRG):经典的高斯过程回归。KPLS and KPLSK: 使用PLS降维来处理高维训练数据的KRG变体。GPX:是使用 Rust 重新实现的 KRG 和 KPLS,以实现更快的训练/预测操作。GEKPLS:利用衍生品训练数据来提高替代模型质量。
2024-09-13 15:11:11
5504
原创 KADAL | Kriging代理模型Python工具箱推荐
用于分析、设计优化和探索的克里金法 (Kriging for Analysis, Design optimization, And expLoration, KADAL) 是由万隆理工学院 (Institut Teknologi Bandung, ITB) 的流动诊断研究小组(Flow Diagnostics Research Group)[1]开发的 Python 程序,其中包含贝叶斯优化工具集合,包括各种代理模型方法、采样技术和优化方法。目前,该程序正在开发中,尚未在 Pypi 上提供。Kriging。
2024-09-06 22:52:27
961
原创 Python案例 | 使用四阶龙格-库塔法计算Burgers方程
Burgers方程产生于应用数学的各个领域,包括流体力学、非线性声学、气体动力学和交通流。它是一个基本的偏微分方程,可以通过删除压力梯度项从速度场的Navier-Stokes方程导出。对于黏度系数较小的情况(),Burgers方程会导致经典数值方法难以解决的激波形成。
2024-09-05 13:28:21
737
原创 Python案例 | 四阶龙格库塔法简介
在数值分析中,龙格-库塔法(Runge-Kutta methods)是用于非线性常微分方程的解的重要的一类隐式或显式迭代法。这些技术由数学家卡尔·龙格和马丁·威尔海姆·库塔于1900年左右发明。龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法,其中包括著名的欧拉法,用于数值求解微分方程。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。在各种龙格-库塔法当中有一个方法十分常用,以至于经常被称为“RK4”或者就是“龙格-库塔法”。
2024-09-04 14:56:40
1192
原创 SALib | 灵敏度分析Python工具箱
在系统建模中很有用,可以计算模型输入或外生因素对感兴趣的输出的影响。SALib是常用灵敏度分析方法的Python实现,包括。
2024-08-24 16:29:46
988
原创 SMT | 代理模型Python工具包推荐
代理模型工具箱 (surrogate modeling toolbox, SMT) 是一个基于Python开发的第三方包,其中包含代理模型方法、采样技术和基准测试函数。SMT使用自定义工具来记录,用于嵌入自动测试的代码和动态生成的图表,从而以贡献者最少的努力生成高质量的用户指南。SMT与现有的代理模型库不同,它强调导数,包括用于梯度增强建模的训练导数、预测导数和相对于训练数据的导数。有关如何使用 SMT的示例,您可关注微信公众号"UQLearner",后期将逐步更新SMT使用教程,或查看。
2024-08-24 15:22:37
1820
原创 Python案例 | Kriging预测钢筋混凝土梁长期挠度
Kriging是一种基于高斯过程建模的代理模型,也称为高斯过程回归,是一种用于空间插值和预测的统计方法。最早由丹尼斯·克里金在地质学中提出,通过已知数据点来预测未知点的值,适用于具有空间相关性的情况。Kriging用于回归问题,具体原理的解释可参考SMT工具箱[1]或在微信公众号、CSDN和B站等网站检索学习。笔者认为,对于代理模型/机器学习算法理论的学习应配合具体案例代码。因此,本文将通过一个钢筋混凝土梁长期挠度预测实验数据集,使用python来展示Kriging的回归建模效果。
2024-08-22 22:45:56
678
2
原创 Python案例 | SVR预测钢筋混凝土梁长期挠度
支持向量回归(SVR, Support Vector Regression)是一种监督学习算法,用于预测离散值,背后的基本思想是找到最佳拟合线,即点数最多的超平面。SVR的主要优点之一是计算复杂度不依赖于输入变量的维数,此外,它还具有出色的泛化能力,具有很高的预测精度。SVR用于回归问题,具体原理的解释可下载原文或在微信公众号、CSDN和B站等网站检索学习。笔者认为,对于代理模型/机器学习算法理论的学习应配合具体案例代码。
2024-08-14 15:19:36
385
原创 Python案例 | LightGBM预测钢筋混凝土梁长期挠度
LightGBM (Light Gradient Boosting Machine)是微软[1]于2017年首次发布的一种基于决策树的梯度增强方法,是另一种梯度增强方法。与其他boosting方法的关键区别在于它是基于叶子进行树的分裂,即它可以通过关键点位检测和停计算(其他boosting算法是基于深度或基于级别的),如下图所示。但是它不支持字符串类型的数据,需要使用特殊算法拆分分类数据,因为必须输入整数值(例如索引)而不是列的字符串名称。
2024-08-11 18:01:26
956
原创 Python案例 | XGBoost预测钢筋混凝土梁长期挠度
XGBoost(eXtreme Gradient Boosting)[1]是经过优化的分布式梯度提升库,旨在高效、灵活且可移植,是Boosting算法的其中一种,其思想是将许多弱分类器集成在一起,形成一个强分类器。它可以很好地解决工业界大规模数据的问题。XGBoost可用于分类和回归问题,具体原理的解释可下载原文或在微信公众号、CSDN和B站等网站检索学习。笔者认为,对于机器学习/深度学习算法理论的学习应配合具体案例代码。
2024-08-10 19:19:56
565
原创 ANSYS APDL谐响应分析——悬臂梁的频响函数计算以及幅值、角度(相位)、分贝计算
ANSYS APDL谐响应分析——悬臂梁的频响函数计算,导出频响函数数据,以及MATLAB处理频响函数数据计算幅值、角度(相位)、分贝
2023-05-07 15:16:55
8575
10
原创 基于ANSYS的无约束梁的模态分析与实验结果比较
通过借助ANSYS建立无约束梁有限元模型进行模态分析,计算前3阶固有频率,并与实验结果进行比较,结果表明,ANSYS能够在较少的划分单元数的情况下,较精确地与实验结果吻合。
2023-03-04 17:54:35
3099
原创 Python——使用matplotlib进行多图合并、局部放大及住次坐标轴绘制方法
本文总结了使用matplotlib绘制多个图片分格显示绘制方法,图中图(即:局部放大图)绘制方法以及次坐标轴绘制方法。多图合并绘制1. Subplot多图合一显示2. 图中图3. 次坐标轴1. Subplot多图合一显示## method 1:subplotplt.figure()plt.subplot(2,2,1)plt.plot([0,1],[0,1])plt.subplot(2,2,2)plt.plot([0,1],[0,2])plt.subplot(2,2,3)plt.plo
2022-03-17 14:27:22
4606
原创 Python——pickle文件转化成txt文件及写出numpy数据一行显示成两行的问题解决方法
转换代码如下:import syssys.getdefaultencoding()import pickleimport numpy as npnp.set_printoptions(threshold=1000000000000000)path = 'F:/Python_File/beam/MCS_results_006.pkl'file = open(path,'rb')inf = pickle.load(file,encoding='iso-8859-1') #读取pkl文
2022-01-04 20:59:48
2486
1
原创 Python——Numpy基础教程
1、定义一维数组import numpy as npmy_array = np.array([1,2,2,3,4])print (my_array)========================================================================[1 2 2 3 4]
2021-11-09 14:27:56
1262
原创 ABAQUS使用功能总结
点击Viewport——Viewport Annotation Options——Legend——Numbers——Format——Fixed——OKFixed表示:小数点形式显示Decimal places:表示显示小数点后的位数更改前:更改后:
2021-09-27 09:33:15
15305
原创 ANSYS APDL循环建模时的一些注意事项
应用场景:当我们需要改变有限元模型的某一个或者几个变量进行重复建模时,手动更改变量,将代码复制粘贴到运行框中十分费时费力,而且随着重复计算次数的增加,ANSYS将会越来越卡顿,解决办法只能是关闭ANSYS后重新打开。这时候自然而然就会想到利用DO循环让ANSYS一次性计算完,在编写*DO循环时会遇到许多技术问题,下面总结了部分技术难题,希望对读者有所帮助。ANSYS APDL代码编写循环体时注意事项:1、ANSYS中数组的定义必须在DO循环之前,定义好所需的数组以及变量,在DO循环里面定义数组将会重复
2021-06-11 20:12:07
7659
4
原创 使用MATLAB绘制条形图并填充图案
使用MATLAB的bar函数绘制条形图时,只能够更改条形图的颜色,不能更改条形图的填充图形。针对这个问题,采用以下解决方案。function applyhatch(h,patterns,colorlist)%APPLYHATCH Apply hatched patterns to a figure% APPLYHATCH(H,PATTERNS) creates a new figure from the figure H by% replacing distinct colors in H wi
2021-03-24 21:40:10
4897
8
原创 MATLAB画图技巧——在字母上方添加倒三角
在进行画图比较时,有时需要在X标签、Y标签、标题或图例中的字母上方添加倒三角,下面以一个简单的例子来解释如何进行添加。方法1:clearclcx = -pi:pi/20:pi;plot(x,cos(x),'-ro')xlabel('$\hat{x}$','Interpreter','latex','FontSize',20)ylabel('$\hat{y}$','Interpreter','latex','FontSize',20)title('$\hat{f}$','Interpreter
2020-10-03 10:53:58
13255
5
原创 MATLAB调用ANSYS进行有限元分析
在有限元分析中,当我们需要改变模型的多个物理参数反复进行分析求解。在ANSYS环境下重复操作费时费力。因此,可以使用MATLAB和ANSYS联合进行求解。MATLAB调用ANSYS进行有限元分析步骤如下:MATLAB生成数据,并以科学计数法的形式写出到一个txt文件“input.txt”中;编写ansys的APDL程序,在MATLAB环境下调用APDL程序,ANSYS以batch方式运行进行分析求解,并输出想要分析的结果,写出到一个txt文件“output.txt”中;;MATLAB调用“outp
2020-07-05 11:04:15
13944
4
原创 UQLab——其他概率分布随机变量转换标准Gaussian分布
1、使用UQLab将其他类型的随机变量转换成标准Gaussian分布;2、使用科学计数法输出样本,方便后续ANSYS的调用分析;3、基于MC的可靠度分析。原随机变量分布类型:% 调用UQLab进行采样clcclearuqlab%% Specify these distributions as a UQLab INPUT object:PriorOpts.Marginals(1...
2020-05-07 13:35:31
2785
5
《ANSYS在土木工程实例详解》配套APDL代码资源
2022-11-04
POD - Proper Orthogonal Decomposition
2022-07-26
Exercise in Dynamic Mode Decomposition
2022-07-26
Spectral Proper Orthogonal Decomposition in Matlab
2022-07-26
POD-RBF-master
2022-07-26
ABAQUS for Reinforced Concrete Structures
2022-07-02
力学专业程序实践:用MATLAB解决力学问题的方法与实例_13360517
2018-08-13
同一横坐标值下并排显示比较不同纵坐标值的散点图的绘制
2020-03-09
TA创建的收藏夹 TA关注的收藏夹
TA关注的人