codeforces 911(div.2) D.Small GCD

12 篇文章 0 订阅

题目链接

做法采用一种挺巧妙的容斥求对答案贡献的思想,故发博客来记录一下

带简易注释的AC代码:

#include<bits/stdc++.h>
#define int long long
#define all(x) x.begin()+1, x.end()
using namespace std;
const int N=1e5+10;
vector<int>fac[N];
void init(int n)//求因子数
{
	for(int i=1;i<=n;i++)
	{
		for(int j=i;j<=n;j+=i)
		{
			fac[j].push_back(i);
		}
	}
}
void solve()
{
	int n,ans=0;
	cin>>n;
	vector<int>a(n+1),g(N),f(N),num(N);
	//g[x]表示值gcd(a[i],a[j])为x倍数的个数*权值
	//f[x]表示值gcd(a[i],a[j])为x的个数*权值
	//num[x]表示x为因子出现的次数
	for(int i=1;i<=n;i++)cin>>a[i];
	sort(all(a));
	for(int i=1;i<n;i++)
	{
		for(auto j:fac[a[i]])
		{
			g[j]+=num[j]*(n-i);
			num[j]++;
		}
	}
	for(int i=100000;i>=1;i--)
	{
		f[i]=g[i];
		for(int j=2*i;j<=100000;j+=i)
		{
			f[i]-=f[j];//f[i]=g[i]-f[2*i]-f[3*i]...f[k*i]
		}
		ans+=f[i]*i;
	}
	cout<<ans<<endl;
}
signed main()
{
	//cout<<setiosflags(ios::fixed);
	//cout.precision(2);
	init(100000);
	ios::sync_with_stdio(false);
	cin.tie(nullptr);
	int t=1;
	cin>>t;
	while(t--)
	{
	    solve();
	}
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值