sparkmllib 特征抽取、特征转换及特征选择

特征抽取

  • TF-IDF

TF-IDF一般应用于文本挖掘中,用来反映一个特征项的重要性。设特征项为 t,文档为d,文档集为D。特征频率( term frequency)TF(t,d) 为特征项在文档d中出现在次数。 文档频率(document frequency)DF(t,D)表示含特征项t的文档数。如果只是用tf来衡量重要性,那么对于一遍文档中出现多次但含信息量极少来说是没什么用处的。因此可以用逆文档频率IDF(Inverse document frequency )来衡量特征项的重要性,公式如下:
这里写图片描述
|D|表示文档总数,显然如果t出现在所有的文档中,那么idf的值为0。然后tf-idf为:
这里写图片描述
示例:

import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}

val sentenceData = spark.createDataFrame(Seq(
  (0.0, "Hi I heard about Spark"),
  (0.0, "I wish Java could use case classes"),
  (1.0, "Logistic regression models are neat")
)).toDF("label", "sentence")

val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsData = tokenizer.transform(sentenceData)

val hashingTF = new HashingTF()
  .setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)

val featurizedData = hashingTF.transform(wordsData)
// alternatively, CountVectorizer can also be used to get term frequency vectors

val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)

val rescaledData = idfModel.transform(featurizedData)
rescaledData.select("label", "features").show()
  • Word2Vec
    Word2Vec使用每个词在文档中出现的概率代表这个词,然后整个文档是这些概率值组成的一个向量。它常被用来作文档相似性计算。
    示例:
import org.apache.spark.ml.feature.Word2Vec
import org.apache.spark.ml.linalg.Vector
import org.apache.spark.sql.Row

// Input data: Each row is a bag of words from a sentence or document.
val documentDF = spark.createDataFrame(Seq(
  "Hi I heard about Spark".split(" "),
  "I wish Java could use case classes".split(" "),
  "Logistic regression models are neat".split(" ")
).map(Tuple1.apply)).toDF("text")

// Learn a mapping from words to Vectors.
val word2Vec = new Word2Vec()
  .setInputCol("text")
  .setOutputCol("result")
  .setVectorSize(3)
  .setMinCount(0)
val model = word2Vec.fit(documentDF)

val result = model.transform(documentDF)
result.collect().foreach { case Row(text: Seq[_], features: Vector) =>
  println(s"Text: [${text.mkString(", ")}] => \nVector: $features\n") }

特征转换

  • n-gram
    n-gram代表由n个字组成的句子。利用上下文中相邻词间的搭配信息,在需要把连续无空格的拼音、笔划,或代表字母或笔划的数字,转换成汉字串(即句子)时,可以计算出具有最大概率的句子,从而实现到汉字的自动转换,无需用户手动选择,避开了许多汉字对应一个相同的拼音(或笔划串,或数字串)的重码问题。该模型基于这样一种假设,第N个词的出现只与前面N-1个词相关,而与其它任何词都不相关,整句的概率就是各个词出现概率的乘积。
    示例:
import org.apache.spark.ml.feature.NGram

val wordDataFrame = spark.createDataFrame(Seq(
  (0, Array("Hi", "I", "heard", "about", "Spark")),
  (1, Array("I", "wish", "Java", "could", "use", "case", "classes")),
  (2, Array("Logistic", "regression", "models", "are", "neat"))
)).toDF("id", "words")

val ngram = new NGram().setN(2).setInputCol("words").setOutputCol("ngrams")

val ngramDataFrame = ngram.transform(wordDataFrame)
ngramDataFrame.select("ngrams").show(false)
  • 标准化
    sparkmllib使用Normalizer类来进行标准化。可以指定p的值来进行标准化,p的默认值为2。
    示例:
import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.ml.linalg.Vectors

val dataFrame = spark.createDataFrame(Seq(
  (0, Vectors.dense(1.0, 0.5, -1.0)),
  (1, Vectors.dense(2.0, 1.0, 1.0)),
  (2, Vectors.dense(4.0, 10.0, 2.0))
)).toDF("id", "features")

// Normalize each Vector using $L^1$ norm.
val normalizer = new Normalizer()
  .setInputCol("features")
  .setOutputCol("normFeatures")
  .setP(1.0)

val l1NormData = normalizer.transform(dataFrame)
println("Normalized using L^1 norm")
l1NormData.show()

// Normalize each Vector using $L^\infty$ norm.   infty范数
val lInfNormData = normalizer.transform(dataFrame, normalizer.p -> Double.PositiveInfinity)
println("Normalized using L^inf norm")
lInfNormData.show()

特征选择

特征选择是从特征集合中选取一组子集。因为机器学习中特征太多,我们需要提取有用的特征。假如我们用个DataFrame:

 userFeatures
------------------
 [0.0, 10.0, 0.5]

它第一列为0,因些没什么用需剔除。我们使用VectorSlicer 类的setIndices(1, 2)方法来进行特征提取。

userFeatures     | features
------------------|-----------------------------
 [0.0, 10.0, 0.5] | [10.0, 0.5]

示例:

import java.util.Arrays

import org.apache.spark.ml.attribute.{Attribute, AttributeGroup, NumericAttribute}
import org.apache.spark.ml.feature.VectorSlicer
import org.apache.spark.ml.linalg.Vectors
import org.apache.spark.sql.Row
import org.apache.spark.sql.types.StructType

val data = Arrays.asList(
  Row(Vectors.sparse(3, Seq((0, -2.0), (1, 2.3)))),
  Row(Vectors.dense(-2.0, 2.3, 0.0))
)

val defaultAttr = NumericAttribute.defaultAttr
val attrs = Array("f1", "f2", "f3").map(defaultAttr.withName)
val attrGroup = new AttributeGroup("userFeatures", attrs.asInstanceOf[Array[Attribute]])

val dataset = spark.createDataFrame(data, StructType(Array(attrGroup.toStructField())))

val slicer = new VectorSlicer().setInputCol("userFeatures").setOutputCol("features")

slicer.setIndices(Array(1)).setNames(Array("f3"))
// or slicer.setIndices(Array(1, 2)), or slicer.setNames(Array("f2", "f3"))

val output = slicer.transform(dataset)
output.show(false)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值