1240. 铺瓷砖

文章描述了一个关于计算用最少数量的正方形瓷砖覆盖特定尺寸矩形地面的算法问题。给定矩形的长和宽,目标是找到能完全覆盖地面的最小瓷砖数量,考虑瓷砖可以任意规格,且具有最优子结构特性。文中提供了一种解决方案,包含处理完整矩形和缺失一块矩形的函数,并给出了具体的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你是一位施工队的工长,根据设计师的要求准备为一套设计风格独特的房子进行室内装修。

房子的客厅大小为 n x m,为保持极简的风格,需要使用尽可能少的 正方形 瓷砖来铺盖地面。

假设正方形瓷砖的规格不限,边长都是整数。

请你帮设计师计算一下,最少需要用到多少块方形瓷砖?
示例 1:
输入:n = 2, m = 3
输出:3
解释:3 块地砖就可以铺满卧室。
2 块 1x1 地砖
1 块 2x2 地砖
示例 2:
输入:n = 5, m = 8
输出:5
示例 3:
输入:n = 11, m = 13
输出:6
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/tiling-a-rectangle-with-the-fewest-squares
在这里插入图片描述
小学应用题
思路
1.每一步情况都可以等价于矩形或矩形缺一块
2.具有最优子结构
3.通过平移旋转等变换可以让缺的在左下角。
因此可以写两个函数,一个处理长方形情况(长宽),一个处理缺一块的情况(大小矩形的长宽)。

class Solution {
    
    public int Rectangle(int n, int m,int j,int k)
    {
        if(j==0||k==0)
        return tilingRectangle(m,n);
        if(m==0||n==0)
        {
            return 0;
        }
        j=j>0?j:-j;
        k=k>0?k:-k;

        int p1=n-j;
        int p2=m-k;
        if(p1<p2)
        {
            if(p2>n)
            {
            return Rectangle(n,m-n,j,k)+1;
            }
              
            else if(p2==n)
            {
                return tilingRectangle(p1,k)+1;
            }
            else
            {
                return Rectangle(n-p2,m,j-p2,k)+1;
            }
        }
        else{
            if(p1>m)
            {
            return Rectangle(n-m,m,j,k)+1;
            }
            else if(p1==m)
            {
                return tilingRectangle(j,p2)+1;
            }
            else
            return Rectangle(n,m-p1,j,k-p1)+1;
        }
        

    }
    public int tilingRectangle(int n, int m) {
        if(m==0||n==0)
        {
            return 0;
        }
        if(m==n)
        {
            return 1;
        }
        if(m==1)
        {
            return n;
        }
        if(n==1)
        {
            return m;
        }
        if(n>m)
        return tilingRectangle(m,n);
        int res=169;
        int temp;
        for(int i=n/2;i<=n;i++)
        {
            temp=Rectangle(m,n,i,i)+1;
            if(temp<res)
            res=temp;

        }
        return res;
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值