你是一位施工队的工长,根据设计师的要求准备为一套设计风格独特的房子进行室内装修。
房子的客厅大小为 n x m,为保持极简的风格,需要使用尽可能少的 正方形 瓷砖来铺盖地面。
假设正方形瓷砖的规格不限,边长都是整数。
请你帮设计师计算一下,最少需要用到多少块方形瓷砖?
示例 1:
输入:n = 2, m = 3
输出:3
解释:3 块地砖就可以铺满卧室。
2 块 1x1 地砖
1 块 2x2 地砖
示例 2:
输入:n = 5, m = 8
输出:5
示例 3:
输入:n = 11, m = 13
输出:6
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/tiling-a-rectangle-with-the-fewest-squares
小学应用题
思路
1.每一步情况都可以等价于矩形或矩形缺一块
2.具有最优子结构
3.通过平移旋转等变换可以让缺的在左下角。
因此可以写两个函数,一个处理长方形情况(长宽),一个处理缺一块的情况(大小矩形的长宽)。
class Solution {
public int Rectangle(int n, int m,int j,int k)
{
if(j==0||k==0)
return tilingRectangle(m,n);
if(m==0||n==0)
{
return 0;
}
j=j>0?j:-j;
k=k>0?k:-k;
int p1=n-j;
int p2=m-k;
if(p1<p2)
{
if(p2>n)
{
return Rectangle(n,m-n,j,k)+1;
}
else if(p2==n)
{
return tilingRectangle(p1,k)+1;
}
else
{
return Rectangle(n-p2,m,j-p2,k)+1;
}
}
else{
if(p1>m)
{
return Rectangle(n-m,m,j,k)+1;
}
else if(p1==m)
{
return tilingRectangle(j,p2)+1;
}
else
return Rectangle(n,m-p1,j,k-p1)+1;
}
}
public int tilingRectangle(int n, int m) {
if(m==0||n==0)
{
return 0;
}
if(m==n)
{
return 1;
}
if(m==1)
{
return n;
}
if(n==1)
{
return m;
}
if(n>m)
return tilingRectangle(m,n);
int res=169;
int temp;
for(int i=n/2;i<=n;i++)
{
temp=Rectangle(m,n,i,i)+1;
if(temp<res)
res=temp;
}
return res;
}
}