P10909 [蓝桥杯 2024 国 B] 立定跳远
题目描述
在运动会上,小明从数轴的原点开始向正方向立定跳远。项目设置了 n n n 个检查点 a 1 , a 2 , ⋯ , a n a_1, a_2, \cdots , a_n a1,a2,⋯,an 且 a i ≥ a i − 1 > 0 a_i \ge a_{i−1} > 0 ai≥ai−1>0。小明必须先后跳跃到每个检查点上且只能跳跃到检查点上。同时,小明可以自行再增加 m m m 个检查点让自己跳得更轻松。
在运动会前,小明制定训练计划让自己单次跳跃的最远距离达到 L L L,并且学会一个爆发技能可以在运动会时使用一次,使用时可以在该次跳跃时的最远距离变为 2 L 2L 2L。小明想知道, L L L 的最小值是多少可以完成这个项目?
输入格式
输入共 2 2 2 行。
第一行为两个正整数 n , m n,m n,m。
第二行为 n n n 个由空格分开的正整数 a 1 , a 2 , ⋯ , a n a_1, a_2, \cdots, a_n a1,a2,⋯,an。
输出格式
输出共 1 1 1 行,一个整数表示答案。
输入输出样例 #1
输入 #1
5 3
1 3 5 16 21
输出 #1
3
说明/提示
【样例说明】
增加检查点 10 , 13 , 19 10, 13, 19 10,13,19,因此每次跳跃距离为 1 , 2 , 2 , 5 , 3 , 3 , 3 , 2 1,2, 2, 5, 3, 3, 3, 2 1,2,2,5,3,3,3,2,在第三次跳跃时使用技能即可。
【评测用例规模与约定】
对于
20
%
20\%
20% 的评测用例,保证
n
≤
1
0
2
n \le 10^2
n≤102,
m
≤
1
0
3
m \le 10^3
m≤103,
a
i
≤
1
0
3
a_i \le 10^3
ai≤103。
对于
100
%
100\%
100% 的评测用例,保证
2
≤
n
≤
1
0
5
2 \le n \le 10^5
2≤n≤105,
m
≤
1
0
8
m \le 10^8
m≤108,
0
<
a
i
≤
1
0
8
0 < a_i \le 10^8
0<ai≤108。
#include <bits/stdc++.h>
using namespace std;
const int N=100005;
int n,m,d[N];
bool check(int a){//检查是否合法
int cnt=0;
for(int i=1;i<=n;i++)
cnt+=int(double(d[i]-d[i-1])/double(a)+0.999999)-1;
return cnt<=m+1;
}
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++)cin>>d[i];
int l=1,r=d[n],mid;
while(l<r){//二分答案
mid=l+r>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
cout<<l;
return 0;
}