生成式算法与判别式算法

本文介绍了生成式算法和判别式算法的区别,并以高斯判别分析(GDA)为例进行深入探讨。生成式算法关注p(x|y)和p(y)的建模,而判别式算法直接建模p(y|x)。高斯判别分析基于一元和多元高斯分布,通过极大似然估计求解参数。虽然在数据符合高斯分布时GDA可能表现更好,但逻辑回归由于其弱假设的鲁棒性,在实际应用中更常见。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:网易公开课机器学习 第五课 生成学习算法的观后感或者总结笔记

1. 区别

生成式算法:对p(x|y)和p(y)进行建模,也可以说是对p(x,y)进行建模,即求x,y的联合分布。比如GDA(Gaussian Discriminant Analysis),有两个类别0和1,分别对p(x|y=0)和p(x|y=1)进行建模,还有p(y=0)和p(y=1)进行建模,最终 y^=argmaxip(x|y=i)p(y=i)

判别式算法:对p(y|x)进行建模,相当于一个黑箱,给定一个数据集,直接根据数据集得到决策函数或规则。比如逻辑回归,直接对p(y|x)进行建模。

2. 高斯判别分析

1. 一元高斯分布

p(x;μ,σ)=12πσe(xμ)22σ2

2. 多元高斯分布

p(x;μ,Σ)=1(2π)n/2|Σ|1/2e12(xμ)TΣ1(xμ)

其中 μ 为均值列向量,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值