前言:网易公开课机器学习 第五课 生成学习算法的观后感或者总结笔记
1. 区别
生成式算法:对p(x|y)和p(y)进行建模,也可以说是对p(x,y)进行建模,即求x,y的联合分布。比如GDA(Gaussian Discriminant Analysis),有两个类别0和1,分别对p(x|y=0)和p(x|y=1)进行建模,还有p(y=0)和p(y=1)进行建模,最终 y^=argmaxip(x|y=i)p(y=i) 。
判别式算法:对p(y|x)进行建模,相当于一个黑箱,给定一个数据集,直接根据数据集得到决策函数或规则。比如逻辑回归,直接对p(y|x)进行建模。
2. 高斯判别分析
1. 一元高斯分布
p(x;μ,σ)=12π−−√σe−(x−μ)22σ2
2. 多元高斯分布
p(x;μ,Σ)=1(2π)n/2|Σ|1/2e−12(x−μ)TΣ−1(x−μ)
其中 μ 为均值列向量,