softmax回归
假设函数:
是逻辑回归中sigmoid的扩展。
损失函数为:
但是softmax有一个特点:它有一个“冗余”的参数集。例如我们从每个theta向量中减去一个向量。
换句话说,softmax模型被过度参数化了,对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数。
进一步而言,如果(theta1, theta2, ..., thetak)是代价函数的极小值点,那么(theta1 - a, theta2 - a, ..., thetak - a)同样也是它的极小值点,所以使损失函数最小化的解不是唯一的。(有趣的是,由于损失函数仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题,但是Hessian矩阵是奇异的/不可逆的, 这会直接导致采用牛顿法优化就遇到数值计算问题)。
我们可以令a = theta1,即将theta1替换为零向量,我们就只需要优化k-1个theta分量。
但在实际应用中,为了使算法实现更简单清楚,往往不这么做,而是加入权重衰减来解决softmax回归的参数冗余带来的问题。
有了这个权重衰减(lambda > 0),代价函数就变成了严格的凸函数,这样就可以保证得到唯一解了。此时Hessian矩阵变为可逆矩阵,并且因为损失函数是凸函数,各种优化算法可以保证收敛到全局最优解。
softmax回归 vs k个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。