softmax回归

softmax回归是逻辑回归的扩展,常用于多分类问题。它存在参数冗余,但通过权重衰减可以解决这一问题,确保损失函数严格凸,优化算法能收敛到全局最优解。在类别互斥的情况下,如音乐分类,softmax回归优于k个独立的二元分类器。
摘要由CSDN通过智能技术生成
softmax回归

假设函数:

'

是逻辑回归中sigmoid的扩展。

损失函数为:

'

但是softmax有一个特点:它有一个“冗余”的参数集。例如我们从每个theta向量中减去一个向量。

'

换句话说,softmax模型被过度参数化了,对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数。

进一步而言,如果(theta1, theta2, ..., thetak)是代价函数的极小值点,那么(theta1 - a, theta2 - a, ..., thetak - a)同样也是它的极小值点,所以使损失函数最小化的解不是唯一的。(有趣的是,由于损失函数仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题,但是Hessian矩阵是奇异的/不可逆的, 这会直接导致采用牛顿法优化就遇到数值计算问题)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值