softmax回归
假设函数:
是逻辑回归中sigmoid的扩展。
损失函数为:
但是softmax有一个特点:它有一个“冗余”的参数集。例如我们从每个theta向量中减去一个向量。
换句话说,softmax模型被过度参数化了,对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数。
进一步而言,如果(theta1, theta2, ..., thetak)是代价函数的极小值点,那么(theta1 - a, theta2 - a, ..., thetak - a)同样也是它的极小值点,所以使损失函数最小化的解不是唯一的。(有趣的是,由于损失函数仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题,但是Hessian矩阵是奇异的/不可逆的, 这会直接导致采用牛顿法优化就遇到数值计算问题)。