从 Hadoop 到数据湖:大数据存储技术的演进之路
关键词:Hadoop、HDFS、数据湖、湖仓一体、大数据存储、分布式系统、数据治理
摘要:本文以大数据存储技术的演进为主线,系统梳理从Hadoop分布式文件系统(HDFS)到数据湖的技术发展脉络。通过分析Hadoop诞生的背景与核心架构,揭示其解决海量数据存储的底层逻辑;进一步探讨数据湖的定义、技术特征及关键实现(如元数据管理、ACID事务),对比传统Hadoop生态的局限性;结合实战案例展示从HDFS迁移至数据湖的完整流程,并展望湖仓一体、实时数据湖等未来趋势。本文适合大数据工程师、架构师及技术管理者理解存储技术演进的底层驱动与实践路径。
1. 背景介绍
1.1 目的和范围
随着互联网、物联网与AI技术的爆发式发展,全球数据量正以指数级增长(IDC预测2025年全球数据量将达175ZB)。数据存储技术作为大数据处理的基石,其演进直接影响数据分析、AI训练等上层应用的效率与成本。本文聚焦存储架构的核心变革,覆盖从Hadoop HDFS到数据湖的关键技术节点,包括技术原理、典型场景