爬楼梯问题
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶 示例 2:
输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解题思路
1阶楼梯只有一种方法,2阶楼梯有两种方法,一种是走两次一阶,一种是走一次两阶。3阶楼梯最后一步有两种方法,一种是走一阶,一种是走两阶。走一阶就要知道2阶楼梯有多少种方法,走两阶就要知道1阶楼梯有多少种方法。这里我们很容易想到递归F(3)=F(2)+F(1);同理n阶楼梯F(n)=F(n-1)+F(n-2)。
递归代码如下:
#include <iostream>
using namespace std;
int climbStairs(int n)
{
if(n<=0)
return 0;
if(n==1)
return 1;
if(n==2)
return 2;
else
return climbStairs(n-1)+climbStairs(n-2);
}
int main()
{
int n,t;
cin>>n;
t=climbStairs(n);
cout<<t<<endl;
system("pause");
return 0;
}
但是有一个问题,递归虽然简单,但是执行的太多次效率不高,理论上来说递归都可以写成循环。
以下是非递归代码
#include <iostream>
using namespace std;
int climbStairs(int n)
{
if(n<=2)
return n;
else
{
int n1=1,n2=2;
for(int i=3;i<=n;i++)
{
int temp=n1+n2;
n1=n2;
n2=temp;
}
return n2;
}
}
int main()
{
int n,t,;
cin>>n;
t=climbStairs(n);
cout<<t<<endl;
system("pause");
return 0;
}