爬楼梯(LeetCode)

爬楼梯问题

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:
输入: 2 输出: 2 解释: 有两种方法可以爬到楼顶。

  1. 1 阶 + 1 阶
  2. 2 阶 示例 2:

输入: 3 输出: 3 解释: 有三种方法可以爬到楼顶。

  1. 1 阶 + 1 阶 + 1 阶
  2. 1 阶 + 2 阶
  3. 2 阶 + 1 阶

来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

解题思路
1阶楼梯只有一种方法,2阶楼梯有两种方法,一种是走两次一阶,一种是走一次两阶。3阶楼梯最后一步有两种方法,一种是走一阶,一种是走两阶。走一阶就要知道2阶楼梯有多少种方法,走两阶就要知道1阶楼梯有多少种方法。这里我们很容易想到递归F(3)=F(2)+F(1);同理n阶楼梯F(n)=F(n-1)+F(n-2)。

递归代码如下:

#include <iostream>
using namespace std;
int climbStairs(int n)
{
	if(n<=0)
		return 0;
	if(n==1)
		return 1;
	if(n==2)
		return 2;
	else
		return climbStairs(n-1)+climbStairs(n-2);
	
}
int main()
{
	int n,t;
	cin>>n;
	t=climbStairs(n);
	cout<<t<<endl;
	system("pause");
	return 0;
} 

但是有一个问题,递归虽然简单,但是执行的太多次效率不高,理论上来说递归都可以写成循环。

以下是非递归代码

#include <iostream>
using namespace std;
int climbStairs(int n)
{
	if(n<=2)
	 	return n;
	else
	{
		int n1=1,n2=2;
		for(int i=3;i<=n;i++)
		{
			int temp=n1+n2;
			n1=n2;
			n2=temp;		
		}
		return n2;
	}		
}
int main()
{
	int n,t,;
	cin>>n;
	t=climbStairs(n);
	cout<<t<<endl;
	system("pause");
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

努力发光的程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值