蓝桥杯 算法提高 矩阵乘法

此题只过了7个测试点,后面的速度可以(本地运行感觉挺快的,提交测试是超时),但是结果是负数,应该是乘的结果超出了边界,但不知怎么修改

一开始没有理解题意,一直觉得算不出这个答案来,后来发现,题意是这样的;

举个例子: 1x10 10x5的矩阵,合并就成了1x5的矩阵,运算次数是1x10x5

每次相邻的两个矩阵可以合并,那么我们总是希望对有两个最小花费的矩阵进行合并,假设第一个矩阵是x*y,第二个是y*z

那么新花费就是 第一个矩阵的花费+第二个矩阵的花费+x*y*z;

假设n个矩阵要合并,两两子最小花费的矩阵进行合并,种类有n-1种,因此每一种都要判断

#include<iostream>
using namespace std;
const int N=1000+9;
typedef long long LL;
const LL INF=9999999999;
LL cost[N][N];//用于存储i---j两点的最小花费
LL d[N];//存储输入的数据 
int main()
{
	LL dp(int start,int end);
	int n;
	LL x;
	cin>>n;
	for(int i=0;i<n;i++)
	{
		cin>>d[i];
		if(i>0)d[i]+=d[i-1];//0~i石子之和,方便计算两堆石子之和 
	}
	for(int i=0;i<n;i++)
		for(int j=0;j<n;j++)
			cost[i][j]=INF;
	cout<<dp(0,n-1);
	return 0;
}

LL dp(int start,int end)
{
	if(end-start==0)	return 0;
	if(cost[start][end]<INF)return cost[start][end];
	else
		for(int i=start;i<end;i++)//状态转移 两堆最小的花费加上合并两堆的花费 
			cost[start][end]=min(cost[start][end],dp(start,i)+dp(i+1,end));
	if(start==0)return cost[start][end]+=d[end];//开头是0,则需要特殊处理 
	return cost[start][end]+=d[end]-d[start-1];//已经算的要记录下来,下次使用 
}

展开阅读全文

没有更多推荐了,返回首页