题解 斜率优化经典题 任务安排*6

任务安排

部分表述来源于《算法竞赛进阶指南》。

题面

题目描述

n n n 个任务排成一个序列在一台机器上等待完成(顺序不得改变),这 n n n 个任务被分成若干批,每批包含相邻的若干任务。

从零时刻开始,这些任务被分批加工,第 i i i 个任务单独完成所需的时间为 t i t _i ti 。在每批任务开始前,机器需要启动时间 s s s,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。

每个任务的费用是它的完成时刻乘以一个费用系数 c i c_ i ci。请确定一个分组方案,使得总费用最小。

输入格式

第一行一个正整数 n n n
第二行是一个整数 s s s

下面 n n n 行每行有一对数,分别为 t i t_i ti c i c_i ci,表示第 i i i 个任务单独完成所需的时间是 t i t_ i ti 及其费用系数 f i f_i fi

输出格式

一个数,最小的总费用。

输入输出样例

输入 #1

5
1
1 3
3 2
4 3
2 3
1 4

输出 #1

153
样例解释

如果分组方案是 { 1 , 2 } , { 3 } , { 4 , 5 } \{1,2\},\{3\},\{4,5\} {1,2},{3},{4,5},则完成时间分别为 { 5 , 5 , 10 , 14 , 14 } \{5,5,10,14,14\} {5,5,10,14,14},费用 C = 15 + 10 + 30 + 42 + 56 C=15+10+30+42+56 C=15+10+30+42+56,总费用就是 153 153 153

任务安排 1( O ( n 3 ) O(n^3) O(n3)

数据范围: 1 ≤ n ≤ 100 , 1 ≤ s ≤ 50 , 1 ≤ t i , c i ≤ 100 1\leq n \leq 100,1\leq s \leq 50,1\leq t_i,c_i \leq 100 1n100,1s50,1ti,ci100

求出 t , c t,c t,c 的前缀和 s u m t , s u m c sumt, sumc sumt,sumc,设 f i , j f_{i,j} fi,j 表示把前 i i i 个任务分成 j j j 批的最小费用,则第 j j j 批任务完成的时间为 j ∗ s + s u m t i j*s+sumt_i js+sumti,状态转移方程:
f i , j = min ⁡ 0 ≤ k < i { f k , j − 1 + ( j ∗ s + s u m t i ) ( s u m c i − s u m c k ) } f_{i,j}=\min_{0\leq k < i}\{f_{k,j-1}+(j*s+sumt_i)(sumc_i-sumc_k)\} fi,j=0k<imin{fk,j1+(js+sumti)(sumcisumck)}

任务安排 2( O ( n 2 ) O(n^2) O(n2)

数据范围: 1 ≤ n ≤ 5000 , 1 ≤ s ≤ 50 , 1 ≤ t i , c i ≤ 100 1\leq n \leq 5000,1\leq s \leq 50,1\leq t_i,c_i \leq 100 1n5000,1s50,1ti,ci100
评测地址:luogu acwing

发现 1 中之所以需要 j j j,是因为我们需要知道机器启动了多少次,从而计算出时间。这里可以利用费用提前计算的 trick,即每次转移都加上此次转移会对之后的所有费用的影响,具体可以参考转移方程:
f i = min ⁡ 0 ≤ j < i { f j + s u m t i ( s u m c i − s u m c j ) + s ( s u m c n − s u m c j ) } f_{i}=\min_{0\leq j < i}\{f_{j}+sumt_i(sumc_i-sumc_j)+s(sumc_n-sumc_j)\} fi=0j<imin{fj+sumti(sumcisumcj)+s(sumcnsumcj)}

const int N = 5010;
int n, s;
ll f[N], sumt[N], sumc[N];

void solve(){
	n = rdi;
	s = rdi;
	for(int i = 1; i <= n; ++ i){
		sumt[i] = sumt[i-1] + rdi;
		sumc[i] = sumc[i-1] + rdi;
	}
	memset(f, 0x3f, sizeof(f));
	f[0] = 0;
	for(int i = 1; i <= n; ++ i){
		for(int j = 0; j < i; ++ j){
			f[i] = min(f[i], f[j] + sumt[i] * (sumc[i] - sumc[j])
			                      + s * (sumc[n] - sumc[j]));
		}
	}
	writen(f[n]);
}

任务安排 3(IOI2002, O ( n ) O(n) O(n)

数据范围: 1 ≤ n ≤ 3 ∗ 1 0 5 , 1 ≤ s , t i , c i < 512 1\leq n \leq 3*10^5,1\leq s,t_i,c_i<512 1n3105,1s,ti,ci<512
评测地址:acwing

对于解法 2 中的转移方程进行变形得:
f i = min ⁡ 0 ≤ j < i { f j − ( s + s u m t i ) ∗ s u m c j } + s u m t i ∗ s u m c i + s ∗ s u m c n f_{i}=\min_{0\leq j < i}\{f_{j}-(s+sumt_i)*sumc_j\}+sumt_i*sumc_i+s*sumc_n fi=0j<imin{fj(s+sumti)sumcj}+sumtisumci+ssumcn
发现 min ⁡ \min min 里有 i j ij ij 的乘积项,考虑斜率优化。
min ⁡ \min min 去掉,把 f j f_j fj s u m c j sumc_j sumcj 看做变量,其他看做常量,得:
f j = ( s + s u m t i ) ∗ s u m c j + f i − s u m t i ∗ s u m c i − s ∗ s u m c n f_j=(s+sumt_i)*sumc_j+f_i-sumt_i*sumc_i-s*sumc_n fj=(s+sumti)sumcj+fisumtisumcissumcn
s u m c j sumc_j sumcj 为横坐标, f j f_j fj 为纵坐标的一个平面直角坐标系中,这是一条以 s + s u m t i s+sumt_i s+sumti 为斜率, f i − s u m t i ∗ s u m c i − s ∗ s u m c n f_i-sumt_i*sumc_i-s*sumc_n fisumtisumcissumcn 为截距的直线。决策候选集合是一个点集,每个决策 j j j 对应着一个点 ( s u m c j , f j ) (sumc_j,f_j) (sumcj,fj),每个带求解的状态 f i f_i fi 表示一条直线的截距,直线的斜率是 s + s u m t i s+sumt_i s+sumti,截距未知。当截距最小化时, f i f_i fi 取到最小值。
令直线过每个决策点 ( s u m c j , f j ) (sumc_j, f_j) (sumcj,fj) 都可求出一个截距,使截距最小的那个就是最优决策。体现在坐标系中,就是用一条斜率固定的直线自下而上平移,第一次接触到某个决策点时就得到最小截距。
对于任意三个决策点 ( s u m c j 1 , f j 1 ) , ( s u m c j 2 , f j 2 ) , ( s u m c j 3 , f j 3 ) ( j 1 < j 2 < j 3 ) (sumc_{j1}, f_{j1}),(sumc_{j2}, f_{j2}),(sumc_{j3}, f_{j3})(j1<j2<j3) (sumcj1,fj1),(sumcj2,fj2),(sumcj3,fj3)(j1<j2<j3),因为 t , c t,c t,c 都为正整数,所以有 s u m c j 1 < s u m c j 2 < s u m c j 3 sumc_{j1}<sumc_{j2}<sumc_{j3} sumcj1<sumcj2<sumcj3。考虑 j 2 j2 j2 什么时候有可能成为最优决策:
如图,在左图中,无论直线斜率是多少, j 2 j2 j2 都不可能为最优决策;而右图中 j 2 j2 j2 可能为最优决策。所以如果 j 2 j2 j2 为最优决策,当且仅当:
f j 2 − f j 1 s u m c j 2 − s u m c j 1 < f j 3 − f j 2 s u m c j 3 − s u m c j 2 \dfrac{f_{j2}-f_{j1}}{sumc_{j2}-sumc_{j1}}<\dfrac{f_{j3}-f_{j2}}{sumc_{j3}-sumc_{j2}} sumcj2sumcj1fj2fj1<sumcj3sumcj2fj3fj2,
实际上就是直线 j 1 , j 2 j1,j2 j1,j2 的斜率要小于直线 j 2 , j 3 j2,j3 j2,j3 的斜率。于是我们可以用单调队列来维护这个“连接相邻两点的线段斜率”单调递增的“下凸壳”。但是此时的队头所对应的截距并非最小。
在本题中,因为 s u m t sumt sumt 单调递增,所以每次求解最小截距的直线的斜率也单调递增,因此我们可以将所有斜率 ≤ s + s u m t i \leq s+sumt_i s+sumti 的部分弹出队列,这样每次的最优决策必然在队头。

算法步骤,对于每个状态变量 i i i

  1. 检查队头两个决策变量 q l , q l + 1 q_l,q_{l+1} ql,ql+1,如果 f q l + 1 − f q l s u m c q l + 1 − s u m c q l ≤ s + s u m t i \dfrac{f_{q_{l+1}}-f_{q_l}}{sumc_{q_{l+1}}-sumc_{q_l}}\leq s+sumt_i sumcql+1sumcqlfql+1fqls+sumti,则弹出队头,继续检查新的队头。
  2. j = q l j=q_l j=ql,利用状态转移方程转移。
  3. 检查 q r − 1 , q r , i q_{r-1},q_r,i qr1,qr,i 是否为下凸,如果否则弹出队尾,继续检查新的队尾。
  4. 加入 i i i
const int N = 3e5 + 10;
int n, s;
ll f[N], sumt[N], sumc[N], q[N];

void solve(){
	n = rdi;
	s = rdi;
	for(int i = 1; i <= n; ++ i){
		sumt[i] = sumt[i-1] + rdi;
		sumc[i] = sumc[i-1] + rdi;
	}
	memset(f, 0x3f, sizeof(f));
	f[0] = 0;
	int l = 1, r = 1;
	q[1] = 0;
	for(int i = 1; i <= n; ++ i){
		while(l < r && (f[q[l+1]] - f[q[l]]) <= (s + sumt[i]) * (sumc[q[l+1]] - sumc[q[l]])){
			++ l;
		}
		f[i] = f[q[l]] - (s + sumt[i]) * sumc[q[l]] + sumt[i] * sumc[i] + s * sumc[n];
		while(l < r && (f[q[r]] - f[q[r-1]]) * (sumc[i] - sumc[q[r]]) >=
		               (f[i] - f[q[r]]) * (sumc[q[r]] - sumc[q[r-1]])){
		    -- r;
		}
		q[++r] = i;
	}
	writen(f[n]);
}

任务安排 4(SDOI2012, O ( n log ⁡ n ) O(n\log n) O(nlogn) t i t_i ti 可能为负)

数据范围: 1 ≤ n ≤ 3 ∗ 1 0 5 , 1 ≤ s , ∣ t i ∣ , c i < 512 1\leq n \leq 3*10^5,1\leq s,|t_i|,c_i<512 1n3105,1s,ti,ci<512
评测地址:luogu acwing

此时的 s u m t i sumt_i sumti 不再单调,所以不能从单调队列的队头来取最优决策,必须要维护整个下凸壳。
所以我们可以在单调队列中二分查找,求出一个位置 p p p p p p 左侧线段的斜率 < s + s u m t i <s+sumt_i <s+sumti,右侧 > s + s u m t i >s+sumt_i >s+sumti,此时的 p p p 即为最优决策。

const int N = 3e5 + 10;
int n, s, l, r;
ll f[N], sumt[N], sumc[N], q[N];

int binary_search(ll k){
	int L = l, R = r;
	while(L < R){
		int mid = L + R >> 1;
		if(f[q[mid+1]] - f[q[mid]] <= k * (sumc[q[mid+1]] - sumc[q[mid]])){
			L = mid + 1;
		} else {
			R = mid;
		}
	}
	return q[L];
}

void solve(){
	n = rdi;
	s = rdi;
	for(int i = 1; i <= n; ++ i){
		sumt[i] = sumt[i-1] + rdi;
		sumc[i] = sumc[i-1] + rdi;
	}
	memset(f, 0x3f, sizeof(f));
	f[0] = 0;
	l = 1, r = 1;
	q[1] = 0;
	for(int i = 1; i <= n; ++ i){
		int p = binary_search(s + sumt[i]);
		f[i] = f[p] - (s + sumt[i]) * sumc[p] + sumt[i] * sumc[i] + s * sumc[n];
		while(l < r && (f[q[r]] - f[q[r-1]]) * (sumc[i] - sumc[q[r]]) >=
		               (f[i] - f[q[r]]) * (sumc[q[r]] - sumc[q[r-1]])){
		    -- r;
		}
		q[++r] = i;
	}
	writen(f[n]);
}

任务安排 ex1( c i c_i ci 可能为负)

可以倒序 dp,设计一个状态转移方程,让 s u m t sumt sumt 为横坐标, s u m c sumc sumc 为斜率中一项,使用 4 的方法求解。

任务安排 ex2( c i , t i c_i,t_i ci,ti 都可能为负)

用平衡树维护凸壳。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值