题解 有标号无向连通图计数

这篇博客探讨了如何计算有标号无向连通图的数量问题。通过动态规划的方法,解释了如何利用递推公式`dpi=2Ci2-j=1∑i−1Ci−1j−1×dpj×2Ci−j2`来解决这个问题,并指出了在n值较大时需要考虑高精度计算的挑战。
摘要由CSDN通过智能技术生成

acwing link

题意

N N N 个节点的无向连通图有多少个,节点有标号,编号为 1 ∼ N 1\sim N 1N。例如下列图示,三个节点的无向连通图共 4 4 4 个。

题解

d p i dp_i dpi 表示 i i i 个节点的无向连通图的个数。求连通图个数不好求,考虑求不连通图个数。则 d p i = a l l i − n o t C o n n e c t e d i dp_i=all_i-notConnected_i dpi=allinotConnectedi

i i i 个节点的无向图有 C i 2 C_i^2 Ci2 条边,每条边可连可不连,所以 a l l i = 2 C i 2 all_i=2^{C_i^2} alli=2Ci2

现在来考虑 n o t C o n n e c t e d i notConnected_i notC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值