前一篇介绍了树,却未介绍树有什么用。但就算我不说,你也能想得到,看我们Windows的目录结构,其实就是树形的,一个典型的分类应用。当然除了分类,树还有别的作用,我们可以利用树建立一个非常便于查找取值又非常便于插入删除的数据结构,这就是马上要提到的二叉查找树(Binary Search Tree),这种二叉树有个特点:对任意节点而言,左子(当然了,存在的话)的值总是小于本身,而右子(存在的话)的值总是大于本身。
这种特性使得我们要查找其中的某个值都很容易,从根开始,小的往左找,大的往右找,不大不小的就是这个节点了;插入一样的道理,从根开始,小的往左,大的往右,直到叶子,就插入,算法比较简单,不一一列了,它们的时间复杂度期望为Ο(logn)。(为什么是“期望”,后面会讲)
删除则稍微麻烦点,因为我们删的不一定是叶子,如果只是叶子,那就好办,如果不是呢?我们最通常的做法就是把这个节点往下挪,直到它变为叶子为止,看图。
也许你要问,如果和左子树最大节点交换后,要删除的节点依然不是叶子,那怎么办呢?那继续呗,看图:
那左子树不存在的情况下呢?你可以查找右子树的最小节点,和上面是类似的,图我就不画了。