AI-数学
文章平均质量分 59
imJaron
这个作者很懒,什么都没留下…
展开
-
均方误差(MSE)
http://blog.csdn.net/Eric2016_Lv/article/details/52819926?locationNum=3&fps=1均方误差单独扽概念是很简单的,这里只做介绍,更深一步的内容会在后面列出来。数理统计中均方误差是指参数估计值与参数真值之差平方的期望值,记为MSE。MSE是衡量“平均误差”的一种较方便的方法,MSE可以评价数据的转载 2018-01-22 12:36:09 · 86028 阅读 · 6 评论 -
数据归一化
多时候,如果不对数据进行归一化,会导致梯度下降复杂或是xgboost中的损失函数只能选择线性,导致模型效果不佳。下面我结合各类我看到的资料总结一下几种方式的归一化,并有python的实现。从经验上说,归一化是让不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。如下有个形象的图解:如果不归一化,各维特征的跨度差距很大,目标函数就会是“扁”的:转载 2018-01-27 23:27:58 · 6264 阅读 · 0 评论 -
条件概率分布、联合概率分布和边缘概率分布
条件概率分布最好和联合概率分布还有边缘概率分布一起说吧。举一个例子应该就都说清楚了:今天晚上天山童姥玩扔飞镖,飞镖偏离靶心的偏离其实是不确定的,所以适合用概率模型来描述,对吧。概率就是衡量可能性的指标。飞镖偏离靶心小于1厘米的概率,和风速,标靶距离都有关系。假定标靶距离可以是10到20米,风速可以是1米/秒到10米/秒,我们可以把每个距离下,每个风速情况下的偏离小于1厘米的概率,大转载 2018-02-01 15:59:42 · 7839 阅读 · 1 评论 -
极大似然估计详解
极大似然估计 以前多次接触过极大似然估计,但一直都不太明白到底什么原理,最近在看贝叶斯分类,对极大似然估计有了新的认识,总结如下:贝叶斯决策 首先来看贝叶斯分类,我们都知道经典的贝叶斯公式: 其中:p(w):为先验概率,表示每种类别分布的概率;:类条件概率,表示在某种类别前提下,某事发生的概率转载 2018-01-23 14:16:18 · 574 阅读 · 0 评论 -
先验概率与后验概率、贝叶斯区别与联系
先验概率和后验概率教科书上的解释总是太绕了。其实举个例子大家就明白这两个东西了。假设我们出门堵车的可能因素有两个(就是假设而已,别当真):车辆太多和交通事故。堵车的概率就是先验概率 。那么如果我们出门之前我们听到新闻说今天路上出了个交通事故,那么我们想算一下堵车的概率,这个就叫做条件概率 。也就是P(堵车|交通事故)。这是有因求果。如果我们已经出了门,然后遇转载 2018-01-23 14:09:10 · 608 阅读 · 0 评论 -
模型选择、参数选择
当我们使用正则化的线性回归方法预测房价时,发现得到的模型应用于新的数据上时有很大误差,这时,我们可以选择一些解决方案,例如: 上图中的这六种解决方案都有相应的条件,如图中蓝色字体所示。【一、回归模型选择】我们引入一类数据集,叫做cross validation set,即交叉验证数据集。将所有数据按6:2:2 分为training set , cross validat转载 2018-01-23 06:42:26 · 2098 阅读 · 0 评论 -
范数正则化L0、L1、L2-岭回归&Lasso回归(稀疏与特征工程)
一、正则化背景监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差。最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据。问题背景:参数太多,会导致我们的模型复杂度上升,容易过拟合。转载 2018-01-22 22:07:49 · 588 阅读 · 0 评论 -
无偏估计
比如我要对某个学校一个年级的上千个学生估计他们的平均水平(真实值,上帝才知道的数字),那么我决定抽样来计算。我抽出一个10个人的样本,可以计算出一个均值。那么如果我下次重新抽样,抽到的10个人可能就不一样了,那么这个从样本里面计算出来的均值可能就变了,对不对?因为这个均值是随着我抽样变化的,而我抽出哪10个人来计算这个数字是随机的,那么这个均值也是随机的。但是这个均值也会服从一个规律(一个原创 2018-01-22 14:05:25 · 1325 阅读 · 0 评论 -
正态分布的"68-95-99.7法则"
转载 2018-01-22 13:12:28 · 8951 阅读 · 0 评论 -
方差、标准差、均方差、均方误差区别总结
一、百度百科上方差是这样定义的: (variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的平方的和的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 看这么一段文字可能有些绕,那就先从公式入手, 对于一组随机变量或者统计数据,其期望值转载 2018-01-22 12:53:07 · 1773 阅读 · 0 评论 -
机器学习中的数据预处理(sklearn preprocessing)
Standardization即标准化,尽量将数据转化为均值为零,方差为一的数据,形如标准正态分布(高斯分布)。实际中我们会忽略数据的分布情况,仅仅是通过改变均值来集中数据,然后将非连续特征除以他们的标准差。sklearn中 scale函数提供了简单快速的singlearray-like数据集操作。一、标准化,均值去除和按方差比例缩放(Standardization, or mean re转载 2018-01-28 16:22:17 · 265 阅读 · 0 评论