解题思路:
(1)将输入的路径按照起点值的大小排序:如测试用例1中排序完后应该是
1 2
4 7
5 8
(2)依次计算每段路径的长度,且要判断是否与前面的路径发生重叠,如果发生重叠,则以当前路径的终点减去上一段路径的终点;如果没有重叠时,则以当前路径的终点减去当前路径的起点;即以当前路径的终点减去二者之间的最大值(上一段路径的终点和当前路径的起点)
#include<iostream>
#include<string>
#include<queue>
using namespace std;
struct Node{
int a;
int b;
Node(int a, int b){
this->a = a;
this->b = b;
}
};
//自定义运算符函数:按照第一列数字小的优先排序
struct cmp{
bool operator()(Node x, Node y){
return x.a > y.a;
}
};
int distanceCovered(int num, int **arr){
if(num == 0)
return 0;
priority_queue<Node*, vector<Node>, cmp> MinQue;
//按照第一列排成小根堆
for(int i = 0; i < num; i ++){
Node *node = new Node(arr[i][0], arr[i][1]);
MinQue.push(*node);
}
int count = arr[0][1] - arr[0][0];//第一条路径无需判断重叠,因此直接计算
while(!MinQue.empty()){
Node Top1 = MinQue.top();//保存原来已经计算过的路径,后面判断是否与正在要进行计算的路径发生重叠
MinQue.pop();
if(!MinQue.empty()){
Node Top2 = MinQue.top();
count += (Top2.b - max(Top2.a, Top1.b));
//如果有重叠,以该路径的终点减去上一段路径的终点;
//没有重叠时,则以该路径的终点减去该路径的起点
//即减去二者之间的最大值(上一段路径的终点和当前路径的起点)
}
}
return count;
}
int main(){
int num;
cin>>num;
int **arr = new int*[num];
for(int i=0;i<num;i++){
arr[i]=new int[2];
}
for(int i=0;i<num;i++){
cin>>arr[i][0]>>arr[i][1];
}
cout<<distanceCovered(num, arr)<<endl;
return 0;
}