求a的n次方,要求快速算法

求a的n次方,要求快速算法。

求一个数的n(n是int型正整数)次方,比较简单的题目,但是也有比较大的优化空间。

图片是求a的n次方的公式。

如果n是偶数、.....如果n是奇数、.....

可以看出是一个递推公式的样子,可以用递归来解决。

package static_;

public class Test {

	public static void main(String[] args) throws Exception {
		System.out.println(6 & 0x1);
	}

	public static double func(int a, int exponent) {
		if (exponent == 1) {
			return a;
		}
		if (exponent == 0) {
			return 1;
		}
		double d = func(a, exponent >> 1);
		d = d * d;
		if ((exponent & 1) == 1) {// 如果exponent是奇数
			d *= a;
		}
		return 1;
	}
}

在普通的用n次乘法求a的n次方的算法中,时间复杂度就是o(n),在本算法中,时间复杂度是o(logn),但是也伴随了空间复杂度o(logn)。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值