目录
初识Redis
1.认识NoSQL
表格对照
【补充】数据库ACID与BASE理论
2.认识Redis
Redis诞生于2009年全称是Remote Dictionary Server,远程词典服务器,是一个基于内存的键值型NoSQL数据库。
特征:
键值(key-value)型,value支持多种不同数据结构(String、List、Set、SortedSet、Hash等),功能丰富
单线程,每个命令具备原子性,安全
低延迟,速度快(基于内存、IO多路复用、良好的编码)。
支持数据持久化(AOF和RDB持久化策略)
支持主从集群、分片集群
支持多语言客户端----Java、C++、C#、Python、PHP等语言都支持。
3.安装Redis
redis官方是没有提供Windows系统的redis版本的,官方仅仅提供了Linux系统版本的redis,Windows版本的redis是微软开发的。
1.安装redis
略
2.Redis客户端
(1)命令行客户端
命令行客户端会在Redis的客户端安装成功时同时安装成功
(2)图形化桌面客户端
略。
3)编程客户端----C++、C、C#、Java客户端
后面在项目中整合。
Redis常见命令
1.Redis的数据结构
简介:
2.通用命令
通用指令是部分数据类型的,都可以使用的指令,常见的有:
KEYS:查看符合模板的所有key,不建议在生产环境设备上使用,因为redis是单线程的,当有大量数据进行查询时会阻塞,但是可以在redis主从节点的从节点上面去做这种扫描全表的操作,以提升效率。
DEL:删除一个指定的key
EXISTS:判断key是否存在
EXPIRE:给一个key设置有效期,有效期到期时该key会被自动删除
TTL:查看一个KEY的剩余有效期
3.String类型
1.简介
String类型,也就是字符串类型,是Redis中最简单的存储类型。
其value是字符串,不过根据字符串的格式不同,又可以分为3类:
string:普通字符串
int:整数类型,可以做自增、自减操作
float:浮点类型,可以做自增、自减操作
不管是哪种格式,底层都是字节数组形式存储,只不过是编码方式不同。字符串类型的最大空间不能超过512m.
2.常见命令
String的常见命令有:
SET:添加或者修改已经存在的一个String类型的键值对
GET:根据key获取String类型的value
MSET:批量添加多个String类型的键值对
MGET:根据多个key获取多个String类型的value
INCR:让一个整型的key自增1
INCRBY:让一个整型的key自增并指定步长,传入的数字为负数的话,可以做出自减效果,例如:incrby num 2 让num值自增2
INCRBYFLOAT:让一个浮点类型的数字自增并指定步长(精度存在一定问题)
SETNX:添加一个String类型的键值对,前提是这个key不存在,如果存在就会执行失败
SETEX:添加一个String类型的键值对,并且指定有效期
3.key的结构
问:Redis没有类似MySQL中的Table的概念,我们该如何区分不同类型的key呢?例如,需要存储用户、商品信息到redis,有一个用户id是1,有一个商品id恰好也是1。
答:Redis的key允许有多个单词形成层级结构,多个单词之间用':'隔开,格式如下:
项目名:业务名:类型:id
这个格式并非固定,也可以根据自己的需求来删除或添加词条。
4.Hash类型
1.简介
Hash类型,也叫散列,其value是一个无序字典,类似于Java中的HashMap结构。
String结构是将对象序列化为JSON字符串后存储,当需要修改对象某个字段时很不方便:
Hash结构可以将对象中的每个字段独立存储,可以针对单个字段做CRUD:
2.Hash的常见命令有:
HSET key field value:添加或者修改hash类型key的field的值
HGET key field:获取一个hash类型key的field的值
HMSET:批量添加多个hash类型key的field的值
HMGET:批量获取多个hash类型key的field的值
HGETALL:获取一个hash类型的key中的所有的field和value
HKEYS:获取一个hash类型的key中的所有的field
HVALS:获取一个hash类型的key中的所有的value
HINCRBY:让一个hash类型key的字段值自增并指定步长,可以写负数,做出自减的效果
HSETNX:添加一个hash类型的key的field值,前提是这个field不存在,否则不执行,案例如图:
5.List类型
1.简介
Redis中的List类型与Java中的LinkedList类似,可以看做是一个双向链表结构。既可以支持正向检索和也可以支持反向检索。
特征也与LinkedList类似:
有序
元素可以重复
插入和删除快
查询速度一般
常用来存储一个有序数据,例如:朋友圈点赞列表,评论,秒杀列表等。
2.List类型的常见命令
LPUSH key element ... :向列表左侧插入一个或多个元素
LPOP key:移除并返回列表左侧的第一个元素,没有则返回nil
RPUSH key element ... :向列表右侧插入一个或多个元素
RPOP key:移除并返回列表右侧的第一个元素
LRANGE key star end:返回一段角标范围内的所有元素
BLPOP和BRPOP:与LPOP和RPOP类似都是移除并返回列表左侧的第一个元素,只不过在没有元素时会去等待一定的时间,而不是直接返回nil,即这是个等待式(阻塞式)的移除元素方式
例如:移除user:service:4这个队列左侧的第一个元素,如果user:service:4这个队列没有元素则会等待20s。
3.
(1)如何利用List结构模拟一个栈?
入口和出口在同一边
(2)如何利用List结构模拟一个队列?
入口和出口在不同边
(3)如何利用List结构模拟一个阻塞队列?
入口和出口在不同边出队时采用BLPOP或BRPOP
6.Set类型
1.简介
Redis的Set结构与Java中的HashSet类似,可以看做是一个value为null的HashMap。因为也是一个hash表,因此具备与HashSet类似的特征:
无序
元素不可重复
查找快
支持交集、并集、差集等功能
2.常见命令
Set的常见命令有:
SADD key member ... :向set中添加一个或多个元素
SREM key member ... : 移除set中的指定元素
SCARD key: 返回set中元素的个数
SISMEMBER key member:判断一个元素是否存在于set中
SMEMBERS:获取set中的所有元素
SINTER key1 key2 ... :求key1与key2的交集
SDIFF key1 key2 ... :求key1与key2的差集
SUNION key1 key2 ..:求key1和key2的并集
7.SortedSet类型
1.简介
Redis的SortedSet是一个可排序的set集合,与Java中的TreeSet有些类似,但底层数据结构却差别很大。SortedSet中的每一个元素都带有一个score属性,可以基于score属性对元素排序,底层的实现是一个跳表(SkipList)加 hash表。SortedSet具备下列特性:
可排序
元素不重复
查询速度快(查询快的原因在于底侧使用了hash表,查询时可以做到精准定位)
因为SortedSet的可排序特性,经常被用来实现排行榜这样的功能。
2.常用命令
SortedSet的常见命令有:
ZADD key score member:添加一个或多个元素到sorted set ,如果已经存在则更新其score值
ZREM key member:删除sorted set中的一个指定元素
ZSCORE key member : 获取sorted set中的指定元素的score值
ZRANK key member:获取sorted set 中的指定元素的排名
ZCARD key:获取sorted set中的元素个数
ZCOUNT key min max:统计score值在给定范围内的所有元素的个数
ZINCRBY key increment member:让sorted set中的指定元素自增,步长为指定的increment值
ZRANGE key min max:按照score排序后,获取指定排名范围内的元素
ZRANGEBYSCORE key min max:按照score排序后,获取指定score范围内的元素
ZDIFF、ZINTER、ZUNION:求差集、交集、并集注意:所有的排名默认都是升序,如果要降序则在命令的Z后面添加REV即可
3.练习
代码结果:
Redis的Java客户端
在Redis官网中提供了各种语言的客户端,地址:https://redis.io/resources/clients/
1.Jedis
Jedis的官网地址: GitHub - redis/jedis: Redis Java client designed for performance and ease of use.
1.快速入门:
Jedis使用的基本步骤:
(1)引入依赖
<dependencies>
<!--1.导入依赖-->
<!--jedis依赖-->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>3.7.0</version>
</dependency>
<!--测试依赖-->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>RELEASE</version>
<scope>test</scope>
</dependency>
</dependencies>
(2)创建Jedis对象,建立连接
(3)使用Jedis,方法名与Redis命令一致
(4)释放资源
package cn.zcj.Jedis;
import org.junit.jupiter.api.AfterEach;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
public class JedisTest {
private Jedis jedis;
//2.建立连接
@BeforeEach
void setup() {
//建立连接
//建立连接的前提:必须保证redis的配置文件里面允许用这个IP去访问redis
//jedis = new Jedis("127.0.0.1",6379);
jedis = new Jedis("192.168.1.43", 6379);
//设置密码
jedis.auth("123456");
//选择库
jedis.select(0);
}
//3.测试在redis中存入String类型的数据
@Test
void testString() {
// 插入数据,方法名称就是redis命令名称,非常简单
String result = jedis.set("name", "小王");
System.out.println("result = " + result);
// 获取数据
String name = jedis.get("name");
System.out.println("name = " + name);
}
//4.释放资源
@AfterEach
void tearDown() {
//释放资源
if (jedis != null) {
jedis.close();
}
}
}
【注意】在创建连接时,必须保证redis的配置文件里面允许用这个IP去访问redis,否则会报连接超时移除
2.Jedis连接池
1.导入依赖
<dependencies>
<!--1.导入依赖-->
<!--jedis依赖-->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>3.7.0</version>
</dependency>
<!--测试依赖-->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>RELEASE</version>
<scope>test</scope>
</dependency>
</dependencies>
2.准备连接池工厂
package cn.zcj;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;
public class JedisConnectionFactory {
private static final JedisPool jedisPool;
static {
JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
// 最大连接
jedisPoolConfig.setMaxTotal(8);
// 最大空闲连接--连接池里面最大允许多少个连接空闲
jedisPoolConfig.setMaxIdle(8);
// 最小空闲连接--连接池里面一直存在多少个连接
jedisPoolConfig.setMinIdle(1);
// 设置最长等待时间(ms)--当连接池里面没有连接可用时,是否等待连接,如果等待,那么就要设置等待时间
jedisPoolConfig.setMaxWaitMillis(200);
jedisPool = new JedisPool(jedisPoolConfig, "192.168.1.43", 6379, 1000, "123456");
}
// 获取Jedis对象
public static Jedis getJedis() {
return jedisPool.getResource();
}
}
3.测试
package cn.zcj.Jedis;
import cn.zcj.JedisConnectionFactory;
import org.junit.jupiter.api.Test;
import redis.clients.jedis.Jedis;
public class JedisTest {
private Jedis jedis;
//3.测试在redis中存入String类型的数据
@Test
void testString() {
jedis = JedisConnectionFactory.getJedis();
// 插入数据,方法名称就是redis命令名称,非常简单
String result = jedis.set("name", "小六");
System.out.println("result = " + result);
// 获取数据
String name = jedis.get("name");
System.out.println("name = " + name);
}
}
4.测试输出:
2.SpringDataRedis
SpringData是Spring中数据操作的模块,包含对各种数据库的集成,其中对Redis的集成模块就叫做SpringDataRedis,官网地址:Spring Data Redis
1.SpringDataRedis的功能:
提供了对不同Redis客户端的整合(Lettuce和Jedis)
提供了RedisTemplate统一API来操作Redis
支持Redis的发布订阅模型
支持Redis哨兵和Redis集群
支持基于Lettuce的响应式编程
支持基于JDK、JSON、字符串、Spring对象的数据序列化及反序列化
支持基于Redis的JDKCollection实现
2.数据类型
3.SpringBoot整合redis
3.1.导入依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>cn.zcj</groupId>
<artifactId>JedisStudyAndTest</artifactId>
<version>1.0-SNAPSHOT</version>
<parent>
<!--SpringBoot父工程依赖-->
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.1.4.RELEASE</version>
</parent>
<dependencies>
<!--1.导入依赖-->
<!--redis依赖-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!--连接池依赖-->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-pool2</artifactId>
</dependency>
<!--测试依赖-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
</dependency>
</dependencies>
</project>
3.2.准备配置文件
3.3.准备启动类
package cn.zcj;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
@SpringBootApplication
public class SpringDataApp {
public static void main(String[] args) {
SpringApplication.run(SpringDataApp.class);
}
}
3.4.测试
package cn.zcj.redis;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.test.context.junit4.SpringRunner;
@SpringBootTest
@RunWith(SpringRunner.class)
public class RedisTest {
@Autowired
private RedisTemplate redisTemplate;
@Test
public void testString() {
//key一般用string类型,value一般用Json序列化类型
// 插入一条string类型数据
redisTemplate.opsForValue().set("name999", "张三丰");
// 读取一条string类型数据
Object name = redisTemplate.opsForValue().get("name999");
System.out.println("name999 = " + name);
}
}
3.5.测试输出:
3.6.SpringDataRedis的序列化方式
3.6.1.问题展示:
问:为什么java代码中明明输入的是"name999",但是在redis的客户机上展示的却是"\xac\xed\x00\x05t\x00\aname999"?
答:RedisTemplate可以接收任意Object作为值写入Redis,只不过写入前会把Object序列化为字节形式,默认是采用JDK序列化,得到的结果是这样的。此时自动注入的redis使用了SpringDataRedis默认的序列化方式,默认的序列化方式是<Object,Object>这种类型的键值对,其中键和值均默认为对象,redis在序列化时将<"name999","张三丰">当成了两个对象在进行序列化,而不是将<"name999","张三丰">当成两个字符串在进行序列化,因此会出现这种情况。
3.6.2.序列化问题改进
3.6.2.1.添加依赖
<!--jackson依赖-->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
</dependency>
3.6.2.2.自定义RedisTemplate的序列化方式
package cn.zcj.config;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
// 创建Template
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();
// 设置连接工厂
redisTemplate.setConnectionFactory(redisConnectionFactory);
// 设置序列化工具
GenericJackson2JsonRedisSerializer jsonRedisSerializer =
new GenericJackson2JsonRedisSerializer();
// key和 hashKey采用 string序列化
redisTemplate.setKeySerializer(RedisSerializer.string());
redisTemplate.setHashKeySerializer(RedisSerializer.string());
// value和 hashValue采用 JSON序列化
redisTemplate.setValueSerializer(jsonRedisSerializer);
redisTemplate.setHashValueSerializer(jsonRedisSerializer);
return redisTemplate;
}
}
3.6.2.3.测试
package cn.zcj.redis;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.test.context.junit4.SpringRunner;
@SpringBootTest
@RunWith(SpringRunner.class)
public class RedisTest {
@Autowired
private RedisTemplate<String,Object> redisTemplate;
@Test
public void testString() {
//key一般用string类型,value一般用Json序列化类型
// 插入一条string类型数据
redisTemplate.opsForValue().set("name999", new Student(9,"张三丰"));
// 读取一条string类型数据
Student name = (Student) redisTemplate.opsForValue().get("name999");
System.out.println("Student:" + name);
}
}
class Student {
private Integer id;
private String name;
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public Student() {
}
public Student(Integer id, String name) {
this.id = id;
this.name = name;
}
@Override
public String toString() {
return "Student{" +
"id=" + id +
", name='" + name + '\'' +
'}';
}
}
测试输出:
再次对比:
4.RedisTemplate的两种序列化实践方案
方案一:
(1)自定义RedisTemplate
(2)修改RedisTemplate的序列化器为GenericJackson2JsonRedisSerializer
案例展示:上文3.6.2的案例就是。
方案二:
(1)使用StringRedisTemplate
(2)写入Redis时,手动把对象序列化为JSON
(3)读取Redis时,手动把读取到的JSON反序列化为对象
方案二的问题展示:
尽管JSON的序列化方式可以满足我们的需求,但依然存在一些问题,如图:
为了在反序列化时知道对象的类型,JSON序列化器会将类的class类型写入json结果中,存入Redis,会带来额外的内存开销。
为了节省内存空间,我们并不会使用JSON序列化器来处理value,而是统一使用String序列化器,要求只能存储String类型的key和value。当需要存储Java对象时,手动完成对象的序列化和反序列化。
Spring默认提供了一个StringRedisTemplate类,它的key和value的序列化方式默认就是String方式。省去了我们自定义RedisTemplate的过程:
package cn.zcj.redis;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.test.context.junit4.SpringRunner;
import java.io.IOException;
@SpringBootTest
@RunWith(SpringRunner.class)
public class RedisTest02 {
@Autowired
private StringRedisTemplate stringRedisTemplate;
// JSON工具
private static final ObjectMapper mapper = new ObjectMapper();
@Test
public void testStringTemplate() throws IOException {
// 准备对象
User user = new User();
user.setId(12);
user.setName("张无忌");
// 手动序列化
String json = mapper.writeValueAsString(user);
// 写入一条数据到redis
stringRedisTemplate.opsForValue().set("user:200", json);
// 读取数据
String val = stringRedisTemplate.opsForValue().get("user:200");
// 反序列化
User user1 = mapper.readValue(val, User.class);
System.out.println("user1 = " + user1);
}
static class User {
private Integer id;
private String name;
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public User() {
}
@Override
public String toString() {
return "User{" +
"id=" + id +
", name='" + name + '\'' +
'}';
}
}
}
【注意】此时内部类必须要加关键字static,否则就会出现嵌套异常;如果不是内部类,是单独的pojo对象,就可以不须要关键字static.
测试输出:
5.redid中操作hash类型数据
package cn.zcj.redis;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.test.context.junit4.SpringRunner;
import java.util.Map;
@SpringBootTest
@RunWith(SpringRunner.class)
public class RedisHashTest {
@Autowired
private StringRedisTemplate stringRedisTemplate;
@Test
public void testHash(){
stringRedisTemplate.opsForHash().put("user:10010","id","123");
stringRedisTemplate.opsForHash().put("user:10010","name","独孤求败");
stringRedisTemplate.opsForHash().put("user:10010","sex","男");
Map<Object, Object> entries = stringRedisTemplate.opsForHash().entries("user:10010");
System.out.println(entries);
}
}
测试输出: