四种方法。
方法1:
直接暴力,sumRange o(n),update为o(1),如果k次操作均是求和,则时间复杂度为o(kn),难以承受
class NumArray {
vector<int> v;
public:
NumArray(vector<int>& nums) {
for(int i :nums) v.push_back(i);
}
void update(int i, int val) {
v[i] = val;
}
int sumRange(int i, int j) {
int sum = 0;
for(int k = i; k<= j; ++k)
sum += v[k];
return sum;
}
};
方法2:
使用前缀和维护sum[i]
sumRange时间复杂度是o(1),但是update时间复杂度为o(n),如果k次操作均是求和,时间复杂度为o(kn)
class NumArray {
vector<int> arr, sum;
public:
NumArray(vector<int>& nums) {
if(nums.size() == 0) return;
arr = nums;
sum.resize(nums.size());
fill(sum.begin(), sum.end(), 0);
sum[0] = nums[0];
for(int i = 1; i < nums.size(); ++i)
sum[i] = sum[i - 1] + nums[i];
}
void update(int i, int val) {
for(int k = i; k < sum.size(); ++k)
sum[k] += (val - arr[i]);
arr[i] = val; // 修改之
}
int sumRange(int i, int j) {
if(i == 0) return sum[j];
else return sum[j] - sum[i - 1];
}
};
方法3:
树状数组,tree[i]存放的是i号位之前lowbit(i)个元素之和,update和sumRange均为logn
class NumArray {
vector<int> arr, tree; // tree树状数组,注意树状数组下标比原数组多1
public:
NumArray(vector<int>& nums) {
arr.resize(nums.size() + 1);
tree.resize(nums.size() + 1); // 树状数组下标从1开始
fill(arr.begin(), arr.end(), 0);
fill(tree.begin(), tree.end(), 0); // 初始化arr和树状数组为0
for(int i = 0; i < nums.size(); ++i)
update(i, nums[i]); // 初始化树状数组
}
inline int lowbit(int x) //求得能整除x的最大的2的幂次
{
return x & (-x);
}
void update(int i, int val) { // 向后更新,注意下标
for(int j = i + 1; j < tree.size(); j += lowbit(j))
tree[j] += (val - arr[i + 1]);
arr[i + 1] = val; // 修改该位置
}
int getSum(int x) // 获得x位置之前的元素和,向前求和
{
int sum = 0;
for(int k = x + 1; k >= 1; k -= lowbit(k))
sum += tree[k];
return sum;
}
int sumRange(int i, int j) {
return getSum(j) - getSum(i - 1); // 得到区间和
}
};
方法4:
线段树,sumRange (logn), update(logn)
int n; // 全局变量作为默认参数
class NumArray{
vector<int> tree; // tree线段树存放和,arr存放原数组
public:
NumArray(vector<int>& nums) {
if(nums.size() == 0) return;
n = nums.size() - 1;
tree.resize(4 * nums.size()); // 4倍原数组
build_tree(nums); // 根节点下标为0
}
// left-right二分区间,cur为当前的tree的下标
void build_tree(const vector<int>& arr, int cur = 0, int left = 0, int right = n)
{
if(left == right)
{
tree[cur] = arr[left];
return;
}
int mid = (left + right) >> 1;
int l_child = 2 * cur + 1, r_child = 2 * cur + 2;
build_tree(arr, l_child, left, mid);
build_tree(arr, r_child, mid + 1, right);
tree[cur] = tree[l_child] + tree[r_child];
}
// 区间搜索依赖于原数组的下标,更新依赖于线段树
void update(int i, int val, int cur = 0, int left = 0, int right = n) {
if(left == right)
{
tree[cur] = val;
return;
}
int mid = (left + right) >> 1;
int l_child = 2 * cur + 1, r_child = 2 * cur + 2;
if(i >= left && i <= mid) // 要更新的位置落在原数组左半区,更新左子树及其路径
update(i, val, l_child, left, mid);
else update(i, val, r_child, mid + 1, right);
tree[cur] = tree[l_child] + tree[r_child]; //修改完后更新线段树
}
int sumRange(int i, int j, int cur = 0, int left = 0, int right = n) {
if(right < i || left > j) return 0; // 不在查询区间内
if(left >= i && right <= j) return tree[cur]; // 包含当前区间则直接返回
int mid = (left + right) >> 1;
int l_child = 2 * cur + 1, r_child = 2 * cur + 2;
return sumRange(i, j, l_child, left, mid) + sumRange(i, j, r_child, mid + 1, right);
}
};