303. 区域和检索 - 不可变

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xuchonghao/article/details/79954220

一、题意

Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive.

Example:
Given nums = [-2, 0, 3, -5, 2, -1]

sumRange(0, 2) -> 1
sumRange(2, 5) -> -1
sumRange(0, 5) -> -3
Note:
You may assume that the array does not change.
There are many calls to sumRange function.

给定一个整数数组  nums,求出数组从索引 i 到 j  (i ≤ j) 范围内元素的总和,包含 i,  j 两点。

示例:

给定 nums = [-2, 0, 3, -5, 2, -1],求和函数为 sumRange()

sumRange(0, 2) -> 1
sumRange(2, 5) -> -1
sumRange(0, 5) -> -3
说明:

你可以假设数组不可变。
会多次调用 sumRange 方法。

二、分析和解答
第一次代码:

class NumArray {

    int[] arr;
    public NumArray(int[] nums) {
        arr = new int[nums.length];
        for(int i=0;i<nums.length;i++){
            arr[i] = nums[i];
        }
    }

    public int sumRange(int i, int j) {
        int res = 0;
        for(int t=i;t<=j;t++){
            res += arr[t];
        }
        return res;
    }
}

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray obj = new NumArray(nums);
 * int param_1 = obj.sumRange(i,j);
 */

案例都通过,但是时间超时!

第二次代码:

class NumArray {

    int[] arr;
    public NumArray(int[] nums) {
        arr = Arrays.copyOf(nums,nums.length);
    }

    public int sumRange(int i, int j) {
        int res = 0;
        for(int t=i;t<=j;t++){
            res += arr[t];
        }
        return res;
    }
}

/**
 * Your NumArray object will be instantiated and called as such:
 * NumArray obj = new NumArray(nums);
 * int param_1 = obj.sumRange(i,j);
 */

这里改进了for循环,使用了Arrays.copyOf(原数组,长度)函数完成了数组的复制!虽然通过了,但这肯定不是最优的答案,也不是题目要求的答案!

3、第三次代码:

class NumArray {

    int[][] arr;
    public NumArray(int[] nums) {
        arr = new int[nums.length][nums.length];
        for(int i=0;i<nums.length;i++){
            arr[i][i] = nums[i];
             for(int j=i+1;j<nums.length;j++){
                arr[i][j] = arr[i][j-1] + nums[j];
            }
        }

    }

    public int sumRange(int i, int j) {
        return arr[i][j];
    }
}

传统的上述方法,需要一遍遍地调用循环的加法!可以考虑使用一个二维数组保存所有相加的数字:初始化的时候,对角线的元素设置为第i个位置的数字,在矩阵的上三角形中保存这些值。但是这样也超时了!
很显然,这是因为构造二维数组花费了O(n^2)了!因此,如何简单的构造一个二维数组或者能把它换成一位数组或许能够通过!

第四次代码:

class NumArray {

    int[] arr;
    public NumArray(int[] nums) {
        arr = new int[nums.length];
        if(nums.length > 0){
            arr[0] = nums[0];
            for(int i=1;i<nums.length;i++){
                arr[i] = arr[i-1] + nums[i];
            }            
        }

    }

    public int sumRange(int i, int j) {      
        if(i == 0)
            return arr[j];
        else
            return arr[j] - arr[i-1];
    }
}

或者(i==0)?arr[j] : arr[j] - a[i-1]!
动态规划的思想!
注意:重点在于—-会多次调用 sumRange 方法。所以,这本身会有一个for循环的时间复杂度。

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页