题目链接:https://leetcode-cn.com/problems/edit-distance/
题目描述
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。
你可以对一个单词进行如下三种操作:
1.插入一个字符
2.删除一个字符
3.替换一个字符
第一次编辑代码:
class Solution {
public int minDistance(String word1, String word2) {
char[] w1 = word1.toCharArray();
char[] w2 = word2.toCharArray();
int maxOp = w1.length > w2.length ? w1.length : w2.length;
int maxSeq = 0;
for(int i = 0; i < w2.length; i++){
int idx2 = i;
for(int j = 0; j < w1.length; j++){
if(w1.length == w2.length){
if(w1[j] == w2[idx2] && j == idx2)
idx2++;
}else{
if(w1[j] == w2[idx2])
idx2++;
}
if(idx2 >= w2.length)
break;
}
maxSeq = (idx2 - i) > maxSeq ? idx2 - i : maxSeq;
}
return maxOp - maxSeq;
}
}
提交结果
368 / 1146 个通过测试用例
反思
该题考察的是动态规划,需要构建状态矩阵,利用状态转移方程求解。
第二次编辑代码:
class Solution {
public int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
int[][] dp = new int[len1+1][len2+2];
for(int i = 1; i <= len1; i++){
dp[i][0] = dp[i-1][0] + 1;
}
for(int j = 1; j <= len2; j++){
dp[0][j] = dp[0][j-1] + 1;
}
for(int k = 1; k <= len1; k++)
for(int l = 1; l<= len2; l++){
if(word1.charAt(k - 1) == word2.charAt(l - 1))
dp[k][l] = dp[k - 1][l - 1];
else
dp[k][l] = Math.min(dp[k - 1][l - 1],Math.min(dp[k - 1][l],dp[k][l - 1])) + 1;
}
return dp[len1][len2];
}
}