【Java】力扣_每日一题_72.编辑距离_困难

题目链接:https://leetcode-cn.com/problems/edit-distance/

题目描述
给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

1.插入一个字符
2.删除一个字符
3.替换一个字符

第一次编辑代码:

class Solution {
    public int minDistance(String word1, String word2) {
        char[] w1 = word1.toCharArray();
        char[] w2 = word2.toCharArray();
        int maxOp = w1.length > w2.length ? w1.length : w2.length;
        int maxSeq = 0;
        for(int i = 0; i < w2.length; i++){
            int idx2 = i;
            for(int j = 0; j < w1.length; j++){
                if(w1.length == w2.length){
                    if(w1[j] == w2[idx2] && j == idx2)
                        idx2++;
                }else{
                    if(w1[j] == w2[idx2])
                        idx2++;
                }
                if(idx2 >= w2.length)
                    break;
            }
            maxSeq = (idx2 - i) > maxSeq ? idx2 - i : maxSeq;
        }
        return maxOp - maxSeq;
    }
}

提交结果
368 / 1146 个通过测试用例

反思
该题考察的是动态规划,需要构建状态矩阵,利用状态转移方程求解。

第二次编辑代码:

class Solution {
    public int minDistance(String word1, String word2) {
        int len1 = word1.length();
        int len2 = word2.length();
        int[][] dp = new int[len1+1][len2+2];
        for(int i = 1; i <= len1; i++){
            dp[i][0] = dp[i-1][0] + 1;
        }
        for(int j = 1; j <= len2; j++){
            dp[0][j] = dp[0][j-1] + 1;
        }

        for(int k = 1; k <= len1; k++)
            for(int l = 1; l<= len2; l++){
                if(word1.charAt(k - 1) == word2.charAt(l - 1))
                    dp[k][l] = dp[k - 1][l - 1];
                else
                    dp[k][l] = Math.min(dp[k - 1][l - 1],Math.min(dp[k - 1][l],dp[k][l - 1])) + 1;
            }
        
        return dp[len1][len2];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值