【Python】遗传算法求解二元函数最值

本文介绍了使用Python实现遗传算法来寻找二元函数最大值的方法。内容包括遗传算法的编码和解码、交叉和变异操作,以及自然选择过程。通过不断迭代优化种群,最终逼近函数的最值。文中还分享了作者学习Python和遗传算法的心得,并提供了源代码作为参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

序言

遗传算法算是我接触最早的优化算法了,之前大学建模竞赛时学习过,不过当时云里雾里始终没明白其中的原理机制,如今朝花夕拾,看了些博客,又自己动手试了试,总算解决了曾经的困惑。
这里主要参考了(https://blog.csdn.net/ha_ha_ha233/article/details/91364937)的思路,该博主文章写的通俗易懂,建议大家有兴趣的去看看。
我本身不太会Python,借这次机会除了复习遗传算法,也是为了学习Python语法,故我在代码中添加了大量注释,以供同样和我基础薄弱的同学参考,即使你不是为了遗传算法,仅想学习Python知识,相信也能小有裨益。
最后,需要注意的是,本文目的不在于系统阐述遗传算法,一是相关的博客已有很多,二是本人确实没有时间和精力再查阅资料进行系统化规范化论述。本文仅当作一点个人总结,记录和归档。

问题

好了,回到正题,这次要解决的问题是求解二元函数的最大值,该函数代码形式如下:

# 问题函数
# @param x x坐标
# @param y y坐标
# @return z 函数值
def problem_function(x, y):
    return 3 * (1 - x) ** 2 * np.exp(-(x ** 2) - (y + 1) ** 2)\
           - 10 * (x / 5 - x ** 3 - y ** 5) * np.exp(-x ** 2 - y ** 2)\
           - 1 / 3 ** np.exp(-(x + 1) ** 2 - y ** 2)

算法步骤

编码和解码

如果把函数的一个解当作个体,种群即是若干个解的集合。对于人来说,我们习惯使用十进制数去计算解决问题,但在计算机中,操作的对象是二进制数,所以把十进制映射到二进制的过程,称为编码;把二进制映射到十进制的过程,称为解码。编码过程暂且省略,因为我们可以直接生成二进制矩阵:

# 生成随机种群矩阵,这里DNA_SIZE * 2是因为种群矩阵要拆分为x和y矩阵,单条DNA(染色体、个体)长度为24
# 若视x和y为等位基因,x和y组成染色体对,共同影响个体,这里巧妙地与遗传信息对应起来
population_matrix = np.random.randint(2, size=(POPULATION_SIZE, DNA_SIZE * 2))

而解码的过程也并不陌生,回想你在学校时学到的进制转换,他们应该是相似的:

# 解码DNA个体
# @param population_matrix 种群矩阵
# @return population_x_vector, population_y_vector 种群x向量,种群y向量
def decoding_DNA(population_matrix):
    x_matrix = population_matrix[:, 1::2]  # 矩阵分割,行不变,抽取奇数列作为x矩阵
    y_matrix = population_matrix[:, 0::2]  # 矩阵分割,行不变,抽取偶数列作为y矩阵
    # 解码向量,用于二进制转十进制,其值为[2^23 2^22 ... 2^1 2^0],对位相乘累加,二进制转十进制的基础方法
    decoding_vector = 2 ** np.arange(DNA_SIZE)[::-1]
    # 种群x向量,由二进制转换成十进制并映射到x区间
    population_x_vector = x_matrix.dot(decoding_vector) / (2 ** DNA_SIZE - 1)\
                          * (X_RANGE[1] - X_RANGE[0]) + X_RANGE[0]
    # 种群y向量,由二进制转换成十进制并映射到y区间
    population_y_vector = y_matrix.dot(decoding_vector) / (2 ** DNA_SIZE - 1)\
                          * (Y_RANGE[1] - Y_RANGE[0]) + Y_RANGE[0]
    return population_x_vector, population_y_vector
<
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值