问题描述
Linux用户和OS X用户一定对软件包管理器不会陌生。通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其他软件包),完成所有的配置。Debian/Ubuntu使用的apt-get,Fedora/CentOS使用的是yum,以及OS X下可用的homebrew都是优秀的软件包管理器。
你决定设计你自己的软件包管理器。不可避免的,你要解决软件包之间的依赖问题。如果软件包A依赖软件包B,那么安装软件包A以前,必须先安装软件包B。同时,如果想要卸载软件包B,则必须卸载软件包A。现在你已经获得了所有的软件包之间的依赖关系。而且,由于你之前的工作,除0号软件包以外,在你的管理器当中的软件包都会依赖一个且仅一个软件包,而0号软件包不依赖任何一个软件包。依赖关系不存在环(若有m(m>=2)个软件包A1,A2,A2依赖A3,…,Am,其中A1依赖A2,A2依赖A3,A3依赖A4,……,Am-1依赖Am,而Am依赖A1,则称这m个软件包的依赖关系构成环),当然也不会有一个软件包依赖自己。
现在你要为你的软件包管理器写一个依赖解决程序。根据反馈,用户希望在安装和卸载某个软件包时,快速地知道这个操作实际上会改变多少个软件包的安装状态(即安装操作会安装多少个未安装的软件包,或卸载操作会卸载多少个已安装的软件包),你的任务就是实现这个部分。注意,安装一个已安装的软件包,或卸载一个未安装的软件包,都不会改变任何软件包的安装状态,即在此情况下,改变安装状态的软件包数为0。
输入格式
/从manager.in中读入数据。/
输入文件的第1行包含1个整数n,表示软件包的总数。软件包从0开始编号。
随后一行包含n-1个整数,相邻整数之间用单个空格隔开,分别表示1,2,3,…,n-2,n-1号软件包依赖的软件包编号。
接下来一行包含1个整数q,表示询问的总数。
之后的q行,每行1个询问。询问分为两种:
●install x:表示安装软件包x
●uninstall x:表示卸载软件包x
你需要维护每个软件包的安装状态,一开始所有的软件包都处于未安装状态,对于每个操作,你需要输出这步操作会改变多少个软件包的安装状态,随后应用这个操作(即改变你维护的安装状态)。
输出格式
/输出到文件manager.out中。/
输出文件包括q行。
输出文件的第i行输出1个整数,为第i步操作中改变安装状态的软件包数。
样例输入1:
7
0 0 0 1 1 5
5
install 5
install 6
uninstall 1
install 4
uninstall 0
样例输出1:
3
1
3
2
3
样例输入2:
10
0 1 2 1 3 0 0 3 2
10
install 0
install 3
uninstall 2
install 7
install 5
install 9
uninstall 9
install 4
install 1
install 9
样例输出2:
1
3
2
1
3
1
1
1
0
1
样例说明1:
一开始所有的软件安装包都处于未安装状态。
安装5号软件包,需要安装0,1,5三个软件包。
之后安装6号软件包,只需要安装6号软件包。此时安装了0,1,5,6四个软件包。
卸载1号软件包需要卸载1,5,6三个软件包。此时只有0号软件包还处于安装状态。
之后安装4号软件包,需要安装1,4两个软件包。此时0,1,4处于安装状态。
最后,卸载0号软件包会卸载所有的软件包。
数据范围
题解
所谓的“依赖”可看作父子结构。由于没有环,树是可以建立的。
对于安装操作,需要将某一点到根的路径上“未安装”的点的个数输出,并将它们安装。
对于卸载操作,需要将以某一点为根的子树内“已安装”的点的个数统计出来,并将它们卸载。
显然树链剖分。由于操作涉及子树,需用DFS序。
代码
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int Q=100005;
int ls[Q<<3],rs[Q<<3],cnt[Q<<3],lazy[Q<<3],n,tot=1,nn[Q],last[Q],e[Q];
int dep[Q],si[Q],f[Q],bs[Q],id[Q],be[Q],include=0,out[Q];
void pd(int now,int l,int r)
{
int v=lazy[now],mid=(l+r)>>1;
lazy[now]=-1;
if(!ls[now])ls[now]=++tot,lazy[tot]=-1;
if(!rs[now])rs[now]=++tot,lazy[tot]=-1;
lazy[ls[now]]=lazy[rs[now]]=v;
if(v==0)cnt[ls[now]]=cnt[rs[now]]=0;
else cnt[ls[now]]=mid-l+1,cnt[rs[now]]=r-mid;
}
int get(int now,int l,int r,int x,int y,int v)
{
int temp=0,mid=(l+r)>>1;
if(x<=l&&y>=r){
if(v==1)temp=r-l+1-cnt[now];
else temp=cnt[now];
lazy[now]=v;
if(v==1)cnt[now]=r-l+1;
else cnt[now]=0;
return temp;
}
if(lazy[now]!=-1)pd(now,l,r);
if(x<=mid){
if(!ls[now])ls[now]=++tot,lazy[tot]=-1;
temp+=get(ls[now],l,mid,x,y,v);
}
if(y>mid){
if(!rs[now])rs[now]=++tot,lazy[tot]=-1;
temp+=get(rs[now],mid+1,r,x,y,v);
}
cnt[now]=cnt[ls[now]]+cnt[rs[now]];
return temp;
}
inline int R()
{
int x=0;
bool f=false;
char o=getchar();
while(o>58||o<48)
{
if(o=='-')f=true;
o=getchar();
}
while(o>=48&&o<=57)
{
x=(x<<3)+(x<<1)+o-48;
o=getchar();
}
return f?-x:x;
}
void fbc(int x)
{
si[x]=1,bs[x]=0;
int now=0,y,t;
for(t=last[x];t;t=nn[t])
{
y=e[t];
if(y==f[x])continue;
f[y]=x,dep[y]=dep[x]+1;
fbc(y);
si[x]+=si[y];
if(si[y]>now)
now=si[y],bs[x]=y;
}
}
void cbc(int x,int now)
{
id[x]=++include;
be[x]=now;
if(bs[x]!=0)cbc(bs[x],now);
int t,y;
for(t=last[x];t;t=nn[t])
{
y=e[t];
if(y==bs[x]||y==f[x])continue;
cbc(y,y);
}
out[x]=include;
}
int main()
{
char o;
int i,x,y,m;
scanf("%d",&n);
for(i=2;i<=n;i++)
{
scanf("%d",&f[i]),++f[i];
e[i]=i;
nn[i]=last[f[i]];
last[f[i]]=i;
}
f[1]=0,dep[1]=1;
fbc(1);
cbc(1,1);
cnt[0]=0;
for(scanf("%d",&m);m;--m)
while(true)
{
o=getchar();
if(o=='u')
{
x=R();++x;
printf("%d\n",get(1,1,n,id[x],out[x],0));
break;
}
if(o=='i')
{
x=R();++x;
int temp=0;
while(x!=0)
{
temp+=get(1,1,n,id[be[x]],id[x],1);
x=f[be[x]];
}
printf("%d\n",temp);
break;
}
}
return 0;
}