【题解】JZOJ6578 / 洛谷P5201[USACO2019Jan]Shortcut G

洛谷 P5201 [USACO19JAN] Shortcut G

题意

在一个带权无向连通图上,每个点有 a i a_i ai 只奶牛,奶牛会走最短路径到 1 1 1,如果有多条路径,选择字典序最小的,定义移动总时间为所有奶牛走到 1 1 1 的时间之和。你可以修建一条从任意一点到 1 1 1 的边权为 t t t 的边,奶牛只有在平时走到 1 1 1 的路上看到这条边才会走。求最多能减少多少移动总时间。

题解

题目保证了对于每个点都有唯一的路径走到 1 1 1,那么可以建出一棵树,根节点为 1 1 1

然后统计一下子树中奶牛数量总和,对于每个点尝试建时间为 t t t 的新边,可以 O ( 1 ) O(1) O(1) 求出减少的移动总时间。设 j j j i i i 的子树中的节点,则减少的时间为 ( d i s i − t ) ∑ j a j (dis_i-t)\sum\limits_{j}a_j (disit)jaj

时间复杂度 O ( n ) O(n) O(n)

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 50005;
int n, m, t, a[N], vis[N];
LL dis[N], cnt[N], ans = 0;
int cn1 = 0, fi1[N], nx1[N << 1], to1[N << 1], va1[N << 1], cn2 = 0, fi2[N], nx2[N << 1], to2[N << 1];
void ad1(int u, int v, int w) {
	cn1++, nx1[cn1] = fi1[u], fi1[u] = cn1, to1[cn1] = v, va1[cn1] = w; 
	cn1++, nx1[cn1] = fi1[v], fi1[v] = cn1, to1[cn1] = u, va1[cn1] = w;
}
void ad2(int u, int v) { cn2++, nx2[cn2] = fi2[u], fi2[u] = cn2, to2[cn2] = v; }
struct node {
	int r;
	LL dis;
	bool operator < (const node &T) const { return dis > T.dis; }
};
priority_queue<node> pq;
void dij(int r) {
	memset(dis, 0x3f, sizeof(dis)), dis[r] = 0;
	pq.push((node){r, 0});
	while (!pq.empty()) {
		node h = pq.top();
		pq.pop();
		if (vis[h.r]) continue;
		vis[h.r] = 1;
		for (int i = fi1[h.r]; i; i = nx1[i])
			if (dis[to1[i]] > dis[h.r] + va1[i])
				dis[to1[i]] = dis[h.r] + va1[i], pq.push((node){to1[i], dis[to1[i]]});
	}
}
void dfs(int r) {
	cnt[r] = a[r];
	for (int i = fi2[r]; i; i = nx2[i]) dfs(to2[i]);
	for (int i = fi2[r]; i; i = nx2[i]) cnt[r] += cnt[to2[i]];
	if (t < dis[r]) ans = max(ans, (dis[r] - t) * cnt[r]);
}
int main() {
	scanf("%d%d%d", &n, &m, &t);
	for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
	for (int i = 1, u, v, w; i <= m; i++) scanf("%d%d%d", &u, &v, &w), ad1(u, v, w);
	dij(1);
	for (int i = 2; i <= n; i++) {
		int x = n;
		for (int j = fi1[i]; j; j = nx1[j])
			if (dis[i] == dis[to1[j]] + va1[j])
				x = min(x, to1[j]);
		ad2(x, i);
	}
	dfs(1);
	printf("%lld", ans);
	return 0;
}
题目 P5413 "YNOI2019 骑单车" 是一个经典的动态规划和贪心算法的问题。该题主要涉及两个概念:路径规划和状态转移方程。 **背景描述** 假设你在一个二维网格上,每个单元格代表一个地点,你需要从起点出发骑车到终点,并尽可能地减少骑行时间。网格中的每个单元格都有两种可能的状态:平地(速度不变)或斜坡(速度减半)。你的目标是找到一条最短的路线。 **关键点解析** 1. **动态规划**:通常用于求解最优化问题。在这个问题中,我们可以定义一个二维数组 dp[i][j] 表示从起点到位置 (i, j) 的最短行驶时间。状态转移方程会根据当前位置的性质(平地还是斜坡)以及到达此位置的最短路径来自之前的节点计算。 2. **状态转移**:对于平地,dp[i][j] = dp[pi][pj] + cost,表示直接移动到相邻位置的时间;对于斜坡,dp[i][j] = min(dp[pi][pj], dp[pi][pj-1]) + cost/2,因为斜坡速度减半,所以需要选择更早的时刻经过。 3. **贪心策略**:有时候,为了达到全局最优,初始看起来不是最优的选择可能是正确的。但在这个问题中,贪心策略可能并不适用,因为我们不能仅依据当前状态做出决策,需要考虑到整个路径。 4. **边界条件**:初始化 dp 数组时,起点时间设为 0,其余位置设为正无穷大,保证一开始就只会向可达的位置移动。 **代码实现** 实现这样的动态规划算法通常需要用到一个优先队列(如最小堆),以便于高效地查找之前节点的最优时间。 **相关问题--:** 1. 如何设计状态转移方程来处理平地和斜坡的情况? 2. 这个问题是否存在剪枝操作以提高效率? 3. 如果网格大小非常大,如何避免存储所有 dp 值导致的空间爆炸?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值