题目:
编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target。该矩阵具有以下特性:
每行的元素从左到右升序排列。
每列的元素从上到下升序排列。
示例:
代码:
- 解法一
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix == null) return false;
int m = matrix.length;
if(m == 0) return false;
int n = matrix[0].length;
//从右上角开始找
//如果该值小于target,则排除该行,向下找
//如果该值大于target,则排除该列,向左找
for(int i = 0, j = n - 1; i < m && j > -1;){
if(matrix[i][j] > target){
j--;
}else if(matrix[i][j] < target){
i++;
}else{
return true;
}
}
return false;
}
}
- 解法二
//先在行间使用二分查找 找出target所在的行
//再在当前行上使用二分查找 找出target
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if(matrix==null){
return false;
}
int m=matrix.length;
int n=matrix[0].length;
int frontLine=0;
int rearLine=m-1;
int midLine=(frontLine+rearLine)/2;
while(true){ //查找当前行
if(target>matrix[midLine][n-1]){
frontLine=midLine+1;
}
if(target<matrix[midLine][0]){
rearLine=midLine-1;
}
if(target>matrix[midLine][0]&&target<matrix[midLine][n-1]){
int front=0;
int rear=n-1;
int mid=(front+rear)/2;
while(front<rear){ //在当前行上查找元素
if(target>matrix[midLine][mid]){
front=mid+1;
}
if(target<matrix[midLine][mid]){
rear=mid-1;
}
if(target==matrix[midLine][mid]){
return true;
}
}
return false;
}
}
}
}
- 别人的代码
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix.length == 0 || matrix[0].length == 0) return false;
int l = 0, r = matrix.length - 1;
while (l < r) {
int m = l + r + 1 >> 1;
if (matrix[m][0] <= target) l = m;
else r = m - 1;
}
int b = l;
for (int i = 0; i <= b; i++) {
l = 0; r = matrix[0].length - 1;
while (l <= r) {
int m = l + r >> 1;
if (matrix[i][m] == target) return true;
if (matrix[i][m] > target) r = m - 1;
else l = m + 1;
}
}
return false;
}
}