infinity_edge的博客

同学,你听说过cuichen吗?

【bzoj1083】【SCOI2005】繁忙的都市

Description

  城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市C的道
路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连
接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这
个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的
要求: 1. 改造的那些道路能够把所有的交叉路口直接或间接的连通起来。 2. 在满足要求1的情况下,改造的
道路尽量少。 3. 在满足要求1、2的情况下,改造的那些道路中分值最大的道路分值尽量小。任务:作为市规划
局的你,应当作出最佳的决策,选择那些道路应当被修建。

Input

  第一行有两个整数n,m表示城市有n个交叉路口,m条道路。接下来m行是对每条道路的描述,u, v, c表示交叉
路口u和v之间有道路相连,分值为c。(1≤n≤300,1≤c≤10000)

Output

  两个整数s, max,表示你选出了几条道路,分值最大的那条道路的分值是多少。


题解

最小生成树裸题 必刷系列之一
竟然还是省选。。毕竟那时这个算法还不水

代码

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,w[50005],p[50005],r[50005],u[50005],v[50005],a,b,ans=0;
int cmp(const int i,const int j){
    return w[i]<w[j];
}
int find(int x){
    return p[x]==x?x:p[x]=find(p[x]);
}
int main(){
    cin>>n>>m;
    for(int i=1;i<=m;i++){
        cin>>u[i]>>v[i]>>w[i];
    }
    for(int i=1;i<=n;i++){
        p[i]=i;
    }
    for(int i=1;i<=m;i++){
        r[i]=i;
    }
    sort(r+1,r+1+m,cmp);
    for(int i=1;i<=m;i++){
        int x=find(u[r[i]]);
        int y=find(v[r[i]]);
        if(x!=y){
            if(w[r[i]]>=ans)ans=w[r[i]];
            p[x]=y;
        }
    }
    cout<<n-1<<' '<<ans;
    return 0;
} 
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/infinity_edge/article/details/52353021
文章标签: 最小生成树 bzoj
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭